

Environmental Barrier Coatings for Ceramic Matrix Composites – An Overview

Kang Lee¹, Mark van Roode², Tania Kashyap³ Dongming Zhu¹, and Valerie Wiesner¹

¹ NASA Glenn Research Center, Cleveland, OH, 44135 USA
² Mark van Roode & Associates, San Diego, CA, 92110 USA
³ Pratt & Whitney, East Hartford, CT, 06118 USA

ICACC 2017, Daytona Beach, FL January 24, 2017

Work partially supported by NASA Transformative Tools Technology (TTT) and Advanced Air Transportation Technology (AATT) Programs

CMC is a game changer

NASA

Higher temperature capability

- Mechanical properties (Creep rupture, Fatigue)
- Oxidation resistance
- Reduced cooling and/or higher turbine firing temperature

Light weight

- 1/3 of Ni-base superalloys
- \searrow Reduced fuel consumption
- Higher thrust
- \searrow Reduced NOx and CO emissions

CMC's are the most promising material option for significant fuel and pollution reductions

CMC turbine engine components

Outline

- CMC and EBC Background
- Gen 1 EBC & Gen 2 EBC
- Engine Test Experience
- Summary & Conclusion

Acknowledgements

This presentation is based on the EBC section of CMH-17 (Composite Materials Handbook)

The Composite Materials Handbook organization creates, publishes and maintains proven, reliable engineering information and standards, subjected to thorough technical review, to support the development and use of composite materials and structures.

CMH-17 Vision

The Composite Materials Handbook will be the authoritative worldwide focal point for technical information on composite materials and structures.

Achilles' Hill of SiC/SiC CMCs

Recession in H₂O(g)

Inner liner (left) Outer liner (right) M. van Roode, et al., Transactions of the ASME, J. Eng. Gas Turbines & Power, 129 [1],21-30, 2007.

NASA Recession Model

Based on "E. J. Opila et al., Am. Ceram. Soc., 80[1], 197-205 (1997)"

Maximum SiC/SiC CMC combustor liner life at ~1200C: ~ 5,000h

Environmental Barrier Coating (EBC)

An external coating to protect CMC from water vapor

 $SiO_{2}(s) + 2H_{2}O(g) = Si(OH)_{4}(g)$

K. N. Lee, Surface and Coatings Technology, 133-134 1-7 (2000).

Gen 1 Environmental Barrier Coatings

K. N. Lee et al., Progress in Ceramic Gas Turbine Development, Vol. 2. ASME PRESS. New York. NY. 641-664 (2003).

- Developed at NASA Glenn in collaboration with GE and P&W 1990s
- From early work on mullite coatings on SiC (Solar, GTE, NASA) 1980s/1990s
- Si/mullite+BSAS/BSAS deposited by plasma spraying
 - BSAS: $(1-xBaO \cdot xSrO \cdot Al_2O_3 \cdot 2SiO_2, 0 \le x \le 1$: barium-strontium-aluminosilicate)
 - High stability in water vapor, CTE match with SiC/SiC, low modulus
 - Si Bond coat: Improve oxidation life of EBC by forming slow growing SiO₂ TGO
 - Mullite: intermediate coat that separates BSAS from SiO₂ TGO
 - SiO₂ reacts with BSAS to form eutectic melt at T ~ 1300°C
 - BSAS addition reduces thermal stress: 20 wt% ~ 50 wt%

K. N. Lee et al., J. Am. Ceram. Soc. 86 [8] 1299-1306 (2003).

Gen 2 Environmental Barrier Coatings

- NASA Ultra Efficient Energy Technology (UEET) program - Early 2000's
- Low CTE Rare Earth silicates:
 - Monosilicates (RE₂SiO₅)and Disilicates (RE₂Si₂O₇)
 - RE = ytterbium (Yb), scandium (Sc), lutetium (Lu), yttrium (Y)
- Higher H₂O stability and m.p. compared to Gen 1

K. N. Lee et al., J. Euro. Ceram. Soc. 25, 1705-1715 (2005).

Gen 2 EBC-coated SiC/SiC CMC and superalloy vanes after 5 h with 2 min cycles at T=(\sim 1260°C - \sim 1316°C), P_{TOTAL} = 6 atm, and v = 24 m/s 9

Recession of RE Disilicates

 $\begin{aligned} \mathsf{RE}_2\mathsf{Si}_2\mathsf{O}_7 + 2\mathsf{H}_2\mathsf{O}(\mathsf{g}) & \rightarrow \mathsf{RE}_2\mathsf{Si}\mathsf{O}_5 + \mathsf{Si}(\mathsf{OH})_4(\mathsf{g}) \\ \mathsf{RE}_2\mathsf{Si}\mathsf{O}_5 + 2\mathsf{H}_2\mathsf{O}(\mathsf{g}) & \rightarrow \mathsf{RE}_2\mathsf{O}_3 + \mathsf{Si}(\mathsf{OH})_4(\mathsf{g}) \end{aligned}$

Burner rig test

1450°C, P(H₂O)=0.27 atm, 100 m/s, P(total)=1 atm, 224h

- Volatilization of Yb₂Si₂O₇ results in Yb₂SiO₅ surface layer
- Monosilicate layer slows down volatility

Klemm et al., Fraunhofer Institute, Proc. 2004 Cocoa Beach Meeting

Silica Activity of RE Silicates at 1377C

	RE = Y	RE = Yb
$a(SiO_2)_{RE2Si2O7}$	0.281	0.194
a(SiO ₂) _{RE2SiO5}	0.000804	0.00298
$a(SiO_2)_{RE2Si2O7}$	350	65
$a(SiO_2)_{RE2SiO5}$		

G. Costa and N.S. Jacobson, J. Eur. Ceram. Soc. 2015

Phase Equilibria Diagrams, American Ceramic Society, Westerville, OH, 1998.

Oxidation of EBC in engines is dominated by H₂O(g)

- Silicon oxidizes faster in H₂O(g) than in air by an order of magnitude (Deal and Grove)
- Attributed to high solubility of H₂O(g) in SiO₂
- Ceramic top coat does not stop the transport of H₂O(g) to Si bond coat

Oxidation of EBC/CMC system must be evaluated in H₂O environments

CMAS Degradation of Gen 1 EBC (BSAS)

K. Grant et al., Surf & Coat Tech 202 653-657 (2007)

Hot-pressed BSAS 4h,1300C,10 mg/cm² CMAS

(b) C=celsian G=CMAS D=diopside.(c) a Sr-rich pocket at the bottom of the infiltrated crevice in (a)

K. Grant et al., Surf & Coat Tech 202 653-657 (2007)B. Harder et al., J. Am. Ceram. Soc. 94[S1] S178-S185 (2011)

- CMAS dissolves BSAS (celsian and hexacelsian) and reprecipitates as modified celsian plus other phases, such as anorthite
 - CMAS penetrates the BSAS grains boundaries to depths much larger than the apparent reaction front
- CMAS reaction with BSAS also affects the EBC residual stress state negatively
 - The surface of BSAS became increasingly compressive with CMAS exposure time
 - The primary form of CMAS degradation of EBCs appears to be thermochemical, yielding phases that compromise chemical and mechanical properties

CMAS: 33CaO-9MgO-13AlO_{1.5}-45SiO₂ (mol%)

CMAS Degradation of Gen 2 EBC (Y₂SiO₅, Yb₂SiO₅)

Hot-pressed Y_2SiO_5 (YMS) 1300C,12~13 mg/cm² CMAS

Apatite layer after (a) 1h, (b) 4h, (c) 24h, and (d) 100h. K. Grant et al., J. Am. Ceram. Soc. 93 3504-3511 (2010)

APS Yb_2SiO_5 (YbMS) 4h,1300C,35 mg/cm² CMAS

- (a) Dark phase: CMAS; Precipitates: Apatite.
- (b) EDS map
- (c) SAED pattern of precipitate: $Ca_2Yb_8(SiO_4)_6O_2$
- F. Stolzenburg et al, Surf. & Coat. Tech., 284 44-50 (2015)

CMAS: 33CaO-9MgO-13AIO_{1.5}-45SiO₂ (mol%)

- YMS and YbMS dissolve into molten CMAS and re-precipitates as apatite
 - $Ca_2Y_8(SiO_4)_6O_2$, $Ca_2Yb_8(SiO_4)_6O_2$
- No CMAS penetration of the EBC grain boundaries unlike BSAS
- Recession after 4h at 1300C (Grant et al.):
 - YMS: ~40 μm
 - EB-PVD Gd₂Zr₂O₇: ~10 μm
 - EB-PVD $Y_4Zr_3O_{12}$: ~15 µm or less
- Two other studies showed similar CMAS-YbMS reactions
 - Ahlborg and Zhu, Surf and Coat Tech, (2013)
 - Zhao, et al, Surf and Coat Tech, 288 151-162 (2016)

CMAS Degradation of Gen 2 EBC (Y₂Si₂O7₇, Yb₂Si₂O₇)

APS $Yb_2Si_2O_7$ (YbDS) 96h,1300C,35 mg/cm² CMAS

(a) Well filled with epoxy

(b & c) Light gray: $Ca_2Yb_8(SiO_4)_6O_2$

(b & d) White features near bottom: Yb_2SiO_5

F. Stolzenburg et al, Surf. & Coat. Tech., 284 44-50 (2015)

APS Yb₂Si₂O₇ (YbDS) 1300C, 30-35 mg/cm² CMAS

CMAS reacted preferentially with YbMS segregates

CMAS: 33CaO-9MgO-13AlO_{1.5}-45SiO₂ (mol%)

- Little or no reaction occurs with YbDS (Stolzenburg)
 - Yb₂O₃ activity of YbDS is lower than YbMS by more than three orders of magnitude (Costa and Jacobson)
 - YbMS should react more readily than YbDS
- Reaction intruded into the interior by the preferential reaction with surface-connected YbMS segregates, leaving peninsulas of less reacted YbDS (Zhao et al.)

CMAS reactions appear to be influenced by coating composition, microstructure, and CMAS chemistry

Summary of EBC Coated SiC/SiC CMC Engine Field Tests

GE CMC Shroud Engine Tests Solar Turbines Inc. CMC Combustor liner Engine Tests

Start Test - End Test CMC EBC Hours/Starts GE/7FA engine/stage 1 inner shrouds HiPerComp® MI prepreg, Si/mullite+BSAS/BSAS (GRC) Dec. 19, 2002-Aug. 17, 2003 5.366/14 rainbow test, S.Florida slurry cast (GRC, HACI, BFG) (9 CMC shrouds) April 17, 2006-End Sept. 2010a Si/mullite+BSAS/BSAS, 1.537/497 HiPerComp® MI prepreg JEA test, Jacksonville, Florida (CCP,GRC) Rare Earth silicates (GRC,MP&E) (96 shrouds) Solar/Centaur 50S engine/inner (top) and outer (bottom) annular combustor liners April 1999-Nov. 2000, Texaco, 13,937/61 HiNi SiC/BN/SiC MI (ACI) Si/mullite/BSAS (UTRC) Baskerville, California HiNi SiC/PyC/SiC CVI(ACI) Si/mullite+BSAS/BSAS (UTRC) HiNi SiC/BN/SiC MI (BFG) Aug. 1999-Oct. 2000, Malden Si/mullite+BSAS/BSAS (UTRC) 7.238/159 Mills, Lawrence, Massachusetts HiNi SiC/PyC/SiC CVI (ACI) Si/mullite+BSAS/BSAS (UTRC) Nov. 2001-May 2002, Texaco, HiNi SiC/BN/SiC MI (BFG) Si//BSAS (UTRC) 5,135/43 Bakersfield, California HiNi SiC/PyC/SiC CVI (ACI) Si/mullite+BSAS/BSAS (UTRC) Aug. 2000-July 2002, Malden Si/mullite+BSAS/BSAS (UTRC) 15,144/92 TyZM/BN/SiC MI (BFG) Mills, Lawrence, Massachusetts HiNi/PyC/SiC CVI (HACI) Si/mullite+BSAS/BSAS (UTRC) TvZMI/BN/SiC MI (HACI) July 2002-July 2003, Malden Si//SAS 8,368/32 Mills, Lawrence, Massachusetts TyZMI/BN/SiC MI (HACI) Si/mullite+SAS/SAS (UTRC) 12,582/63 May 2003-Nov. 2004, HiNi/BN/SiC (DLC/ACI) Si/mullite/BSAS (UTRC) ChevronTexaco, Bakersfield, N720/Al₂O₃ (COIC/SWPC) Aluminosilicate FGI (COIC) California Jan. 2005-Oct. 2006, HiNi/BN/SiC (GE PSC) Si/mullite+BSAS/BSAS (GRC) 12,822/46 ChevronTexaco, Bakersfield, N720/Al₂O₃ (COIC/SWPC) Aluminosilicate FGI (COIC) California Si/mullite/SAS (UTRC) June 2006-May 2007, Tipton, TyZMI/BN/SiC MI (CCP) 7,784/43 California TyZMI/BN/SiC MI (CCP) Si/YS (UTRC)

Gen 2

GE Final Report – DOE AMAIGT Program, Dec. 2010

Ox/Ox

Final Report, Solar Turbines Incorporated, DOE Contract Number DE-FC26-00CH11049, May 28, 2009.

^a Marks end of the govt. program; testing was continued under GE in-house effort.

Two Variants of Gen 1EBCs

GE Shroud Total: 6,903h

GE Final Report – DOE AMAIGT Program, Dec. 2010

Limit of Gen1 Standard EBC @~1200C: ~ 15,000h

Solar Combustor Liner Set Total: 83,010h

M. van Roode et al., Transactions of the ASME, J. Eng. Gas Turbines & Power, 129[1],21-30, 2007.

Oxidation-Induced Degradation

15,144-h Solar Combustor Liner Engine Test

- Ingress of water vapor through EBC
- Bond coat oxidation: SiO₂ TGO formation
 - TGO has different CTE from EBC layers
- Horizontal cracks at Si-SiO₂/mullite+BSAS interface
 - Thermal cycles aggravate crack formation
 - Cracks may also go vertically into the Si bond coat

J. Kimmel et al., ASME paper GT2003-38920, ASME TURBO EXPO, Atlanta, GA, USA, June 16-19, 2003.

5,366-h GE "rainbow" test – progression of degradation

- Edge EBC is more porous; cracks form at surface
- Pathway for ingress of water vapor
- Bond coat oxidation, SiO₂ TGO formation
- Lateral crack formation ->debonding, spallation

Recession-Induced Degradation

13,937-h Solar Combustor Liner Engine Test

- Tooling bumps cause EBC processing defects (Slurry cast MI)
- Pathway for ingress of water vapor in EBC
- Rapid recession of CMC, creating craters, where EBC is breached

Final Report Phase III, Solar Turbines Incorporated, October 1, 1996 – September 30, 2001, DOE Contract DE-AC02-92CE40960, September 30, 2003.

5,366-h GE "rainbow" test

 Slurry cast MI showed similar behavior to Solar Turbines' liner shown above

GE Final Report – DOE AMAIGT Program, Dec. 2010

Combination of Recession and Oxidation

NASA

13,937-h Solar Combustor Liner Engine Test

- Recession of BSAS top layer
- Recession more severe in hot middle section
- Severe oxidation of Si bond coat

Aft

Middle

M. van Roode et al., Transactions of the ASME, J. Eng. Gas Turbines & Power, 129[1],21-30, 2007.

Final Report Phase III, Solar Turbines Incorporated, October 1, 1996 – September 30, 2001, DOE Contract DE-AC02-92CE40960, September 30, 2003.

EBC Failure Modes

Synergies between failure modes lead to the ultimate EBC failure

- Combination of empirical and mechanism-based life modeling
- Engine test is the ultimate validation

NASA EBC Testing Rigs

Rig	Capability	Failure modes to be tested
Mass Spectrometer	$P(H_2O) = N/A$	Recession (High pressure measurement
	v = N/A	of reaction products and Low pressure
	$P_{total} = N/A$	measurement of activities)
Steam TGA	$P(H_2O) = up to ~0.5 atm$	Recession (Initial screening of candidate
	v = a few cm/s	materials)
	P _{total} = 1 atm	
Mach 0.3 Burner rig	$P(H_2O) = ~0.1 \text{ atm}$	CMAS, Erosion, FOD
	v = 230 m/s	
	P _{total} = 1 atm	
Steam cycling rig	$P(H_2O) = up to ~1 atm$	Steam oxidation
	v = a few cm/s	
	P _{total} = 1 atm	
High heat flux laser rig	$P(H_2O) = ambient air$	Thermal fatigue in temp gradient
	v = zero	Thermo-mechanical fatigue in temp
	P _{total} = 1 atm	gradient
Natural gas burner rig	P(H ₂ O) ~ 0.5 atm,	Recession
	v ~ 250m/s	Thermal fatigue in temp gradient
	P _{total} = 1 atm	(Coupons, Tensile bars, components)
CE-5 combustion rig	$P(H_2O) \sim 3 atm$	Steam oxidation w/ temperature gradient
	v ~ >30 m/s	Recession
	P _{total} ~ 30 atm	(Coupons, Tensile bars, components)

- Combinations of rigs to investigate synergies between failure modes
- The only test vehicle that has all key variables is an engine

Conclusion

- CMCs are a game changer for next generation gas turbine engines due to high temperature capability
 - Improves SFC, thrust, and emission
 - EBC is an enabling technology for CMCs
- The first and second Gen EBCs developed in mid 1990s- early 2000s laid the foundations for current EBCs
 - A number of rig and engine tests have been successfully completed
- The introduction of CMCs represents significant challenges as failure of the EBC means significant reduction in component life
 - A reliable EBC life model is required
 - Testing methods relevant to engine conditions is critical to validate life model