

Modeling Microgravity Induced Fluid Redistribution Autoregulatory and Hydrostatic Enhancements

J.G. Myers¹, C. Werner², E.S. Nelson¹, A. Feola³, J. Raykin³, B. Samuels⁴, and C. R. Ethier³

¹NASA Glenn Research Center, Cleveland, OH

²Zin Technologies, Inc. Cleveland Ohio

³Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA;

⁴Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL.

NASA

Numerical Approach to VIIP Physiology

A suite of integrated numerical models simulate physiology over a range of length scales

U4

For studying VIIP, we use:

- (1) Whole-body lumped parameter (LP) model:
- Calculates fluid distribution and Intracranial Pressure (*ICP*) in response to altered gravity (g)

(2) LP eye model:

• Calculates Intraocular Pressure (IOP) and blood volume (V_b) in altered g

(3) Finite element (FE) model of the optic nerve head (ONH) and retrobulbar subarachnoid space (rSAS):

Calculates biomechanical tissue strains

Lumped Cardiovascular System Model: Modified Lakin et al: 16-compartment model

- Lumped Spatial (0-D) unsteady model
 - 16 Compartments
 - 11 blood, 3 CSF, 1 brain, 2 interstitial lymphatic

$$[c] * \left[\frac{dp}{dt} \right] + [z] * [P] = [Q]$$

- Compartments represented at 3 heights
 - cranial, upper, lower

- Original Lakin Implementation
 - Lymphatic
 Autoregulation
 - Intracranial Autoregulation
 - Sympathetic Nervous
 System (SNS)
 - Large vessel response
 - Arteriole response
 - Cardiac Output
 - Linear Function of aortic
 - pressure changes

- Testing illustrated several limitations
 - SNS functions
 - Unable to produce
 adequate responses
 - Cardiac output function
 - Could become unbounded

SNS Control - Modeling Baroreflex

- Blanco et al. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:412–433
 - Ottesen and Larsen, SIAM 2004
 - Ursino, IEEE Trans Biomed V46, No 4, 1999
- Regulation occurs on
 - Heart Rate
 - Arteriole and Capillary resistances
 - Venous compliances
 - E heart muscle elastance

- Assumptions
 - All baroreceptors locations behave the same
 - Afferent nerve fibers activation proportional to cyclic average BP
 - Activation based on previous cardiac cycle

i

 τ_i

Η

 $C_{\rm W}$

Blanco et al Formulation

 Efferent response governed by 1st order ODE

$$\frac{dx_i}{dt} = \frac{1}{\tau_i} \left(-x_i + \sigma_i^b \right)$$

- Index range for set $\mathcal{E} = \{H, R_A, R_C, C_V\}$
- Characteristic Time Constant
 - Heart Rate
- R_A, R_C Flow Resistance
 - Venous Compliance

 Linear combination of sympathetic and parasympathetic activities

$$\sigma_i^b = \alpha_i n_s - \beta_i n_p + \gamma_i$$

- α_i, β_i Weights for sympathetic and parasympathetic activities of each actuator
 - γ_i Basel activation level of each actuator

There is a closed form solution to the ODE assuming parameters are constant over the integration interval (one heart beat T = 1/HR)

$$c_{i,T} = \sigma_i^b + (x_{i,o} - \sigma_i^b) e^{\overline{\tau_i}}$$

Formulation cont

$$f_a = \frac{\zeta}{T} \int_{-T}^{0} P_I dt = \frac{\zeta}{T} trapz(t, P_I) = \zeta * P_{I,avg}$$

 μ Baseline activation pressure mmHg

v Slope Parameter

Cardiac Output: Cavalcanti and Marco, 1999

- Hybrid model
 - Combination of correlated data and heart compartment model
- Heart: Continuous pump
 - Cardiac output a function of atrial pressure (P_{RA}) and heart rate (HR)

$$CO = CO_{sat} \left(1 - e^{\left(-\frac{P_{RA} - P_{RAZ}}{P_{RAN}} \right)} \right)$$

$$CO_{sat} = CO_M (1 + \Delta_{CO} \tanh(K_{co}(HR - \overline{HR})))$$

Parameter	Unit	Value	Description
P _{RAZ}	mmHg	-0.5	Intercept of cardiac pressure curve
P _{RAN}	mmHg	3	Slope of cardiac pressure curve
COM	ml/s	240	Reference Cardiac Output
\overline{HR}	bpm	72	Reference Heart Rate
$\Delta_{\sf CO}$		0.7	Amplitude of sigmoid function
K _{co}	S	0.5	Slope of sigmoid function

Cardiac Output Implementation

- CVS model formulation does not include atrial filling pressure
 - Requires we add an RA compartment
- Treated independently, can be implemented per closed form solution

Assuming constant P_V and CO from the beginning of the T = 1/HR interval, denoted by 0; and assuming a characteristic time $\tau = C_{RA}/Z_{RA}$

 $\frac{dV_{RA}}{dt} = Z_{RA}(P_V - P_{RA}) - CO$

$$P_{RA} = P_{V,0} - \frac{CO_0}{Z_{RA}} + \left(P_{RA,0} - P_{V,0} + \frac{CO_0}{Z_{RA}}\right)e^{-\frac{T}{\tau}}$$

Testing : Supine to Standing

Validation: Head Up Tilt Simulations: Lim et al. 2013

Sensitivity of Whole-Body Model: Histograms of Select Pressures

Ventricular CSF Pressure

- Tested sensitivity of output (compartment pressures) to input (42 physiological parameters) – P, V, C, Z, etc.
- Standing posture, supine 30 sec, standing 3 minutes
- Varied each parameter by ±10%
- Histograms represent 1000+ trials, with 100 discretizations of each Latin hypercube distribution
- Convergence is estimated as < 0.002 change in output standard distribution per 100 trials
- There are similar histograms for each of the 16 compartments

Basel MAP (P Cent Art) and blood volume distributions are the models most sensitive parameters

- Successfully implemented regulation within the DAP-CVS model
 - Time averaged over cardiac cycle
 - Improved traceability and scalability of regulation parameters
 - Some calibration still necessary
- Future efforts to extend capabilities of each sub-model
 - Venous collapse functions using a new approach to Marchandise and Flaud (2010) Incorporate artificial gravity, LBNP and compression cuffs in WBM
 - Refine regulatory models for long-duration flight
- Complete integration of WBM, eye LPM and FEM
 - Systematic verification and validation
 - Potentially follow the BioGears automated validation process

Thanks to: The NASA Human Research program for funding this work

Dr. Beth Lewandowski – Digital Astronaut Project Scientist

Dr. DeVon Griffin – Digital Astronaut Project Manager

Kelly Gilkey – Digital Astronaut Deputy Project Manager

Questions?

Parameter Definition

Table IV. Parameters for the efferent pathways normalized with respect to the corresponding baseline value.

Actuator $(i \in \mathcal{E})$	α_i/i^b	β_i/i^b	γ_i/i^b
Н	1.15	0.34	0.59
$E_{A,x}, x \in \mathcal{C}$	0.40	0	0.80
$R_{a,v}, R_{c,v}, v \in \mathcal{W} \setminus \mathcal{W}_{h}$	0.80	0	0.60
$C_{\mathrm{v,z}}, z \in \mathcal{V}$	-0.20	0	1.10

Table III. Characteristic times τ_i , $i \in \mathcal{E}$, for the different actuators.

Actuator $(i \in \mathcal{E})$	$\tau_i[s]$	
Н	4.0	
$E_{A,x}, x \in \mathcal{C}$	10.0	
$R_{a,v}, R_{c,v}, y \in \mathcal{W} \setminus \mathcal{W}_b$	15.0	
$C_{v,z}, z \in \mathcal{V}$	30.0	

- $\mu\,$ Mean pressure at which the system remains at equilibrium
 - 94.3 to 96 mm Hg
- v Shape factor set at 7 based on Ottesen, 2004.

15

Formulation for Cardiac output

- Typically 3 options
 - Purely correlated function based on experimental responses
 - Lacks fidelity outside the experimental bases
 - Model the 4 chamber heart
 - Current state of the art
 - Excellent for in-beat calculations and assessment of heart / pulmonary interactions
 - Complex to implement and high numerical cost
 - Hybrid model
 - Uses a combination of correlated and heart component modeling

Initial Thoughts on Space Adaptation and Regulation

- Each regulated variable is premised on 6 parameters μ , ν , τ , (i_b/i)_Threshold, (i_b/i)_Saturation, and i_b \square
- This set of parameters will "adapt" as homeostasis is reached during spaceflight
 - Hypothesis The chronic response is represented as resting the acute response
 - Update μ , (i_b/i)_Threshold, and i_b as a first approach

