The Applied Space Environments Conference (ASEC) 2017 Measurements, Models, Testing, and Tools 15-19 May 2017 Huntsville, AL USA

MSFC Solar Wind Facility

K. H. Wright¹, T. A. Schneider², J. A. Vaughn², P. L. Whittlesey³
¹Universities Space Research Association
²NASA/Marshall Space Flight Center
³University of California - Berkeley

Solar Wind Facility (SWF) Layout

SWF Attributes

Vacuum chamber: 4 ft diameter x 8 ft long cylinder; LN_2 cold shroud; quartz windows for solar photon input; base pressure at low 10^{-7} Torr with oil-free pumping

Ion source: Modified Kaufman-type with 10 cm diameter, collimating, matched grid set; housing electrically isolated from chamber; energy and flux computer controlled

Electron source: biased filament accelerates electrons through grounded anode screen; energy and flux computer controlled

Peabody Scientific ion source: water cooled Duo-plasmatron source with steering and focusing in drift tube; pin-hole aperture can be installed in chamber for pencil beam; energy computer controlled

Translation and Rotation Stages: X- and Z- motion at 4000 steps/inch; rotation at 40 steps/degree; all motion computer controlled

Helmholtz Horizontal Coils: Octagon shaped at 11 ft by 11 ft dimension with 9 turns of 12 gauge wire; computer controlled wire current

Helmholtz Vertical Coils: Square shaped at 6 ft by 6 ft dimension with 8 turns of 12 gauge wire; computer controlled wire current

SWF Internal Layout for Solar Probe Cup Test

Note: LN₂ shroud removed to allow for rotational clearance of electronics box

SWF Kaufman Source: Broadbeam Ions

Matched, high transparency, two grid set

Beam Energy ≈ Anode voltage + commanded floating voltage

Broadbeam Ions

Source operated in constant voltage mode

Beam uniformity at 80 mm diameter: > 90% for 140 eV to ~ 80% at 8100 eV

Broadbeam Ions - Stability

SWF Broadbeam Electron Source

Two independent filaments mounting on Macor plate surrounded by grounded anode.

Broadbeam Electrons

Beam uniformity at 80 mm diameter: > 90% for 90 eV to ~ 80% at 2100 eV Vertical Coil current adjusted inconcert with Energy changes between 90 to 1500 eV Horizontal Coil current fixed for all energies.

Broadbeam Electrons - Stability

Pencil Beam Ions

Summary

- MSFC's Solar Wind Facility has been upgraded
 - ✓ Historical capability includes long term, high fluence material exposures
 - ✓ New capability includes high fidelity particle beams for space flight instrument calibration
 - Capability also exists to add solar photon radiation if required
- Both broadbeam ion and electron beams have flux control over several orders of magnitude
- Computer control allows either energy and flux scans with user control of start value, stop value, step size, and dwell time per step