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Introduction 

From its roots in the World War II application of learning curve theory to the problem of aircraft 

production, parametric cost modeling and parametric cost estimating has grown to be a valuable tool 

for predicting the cost of complex and unique systems.  Commercial parametric cost models are 

available to estimate almost any system, large industrial organizations and government agencies invest 

significant resources in developing and maintaining parametric estimating tools and capabilities, and 

professional organizations such as ICEAA provide a forum for exchanging ideas and promoting the 

growth of the profession as well as estimating professionals. 

Over the decades parametric cost models have grown in capability and sophistication.  RCA PRICE 

marketed the first general purpose parametric cost model in 1975.  PRICE proved to be so popular that it 

spawned the PRICE User’s Group which led directly to the creation of the International Society of 

Parametric Analysts (ISPA), a forerunner of ICEAA.  Other commercial tools followed, including SEER by 

Galorath Incorporated and the now defunct FAST model.  Models for estimating software cost 

(COCOMO) or complex systems (COSYSMO) were developed by universities and became popular tools.  

Government cost models, such as the NASA Air Force Cost Model (NAFCOM), were developed and 

distributed for free, enabling cost estimators around the world to parametrically estimate the cost of 

space flight hardware systems.  

So, let’s be honest with ourselves: we love our cost models.  Most parametric cost estimators become 

masters of their models, able to explain (and justify) how specific model settings change a cost estimate 

and why.  We can make our models produce whatever number we need, often supported by technical 

professionals who are usually very willing to help us make sure the model settings are consistent with 

their design assumptions.  The end result is an estimate that is logically consistent with the technical and 

programmatic characteristics of the system.  Not everyone may like our answer, but used properly our 

models give us answers that are credible, supportable, and defendable. 

But what if our models are not solving our estimating problems, but instead are the source of our 

problems?  What if our trust in our models is misplaced?  What if our models are not as good as we 

think they are?  What if we are substituting being good model users for being good cost estimators? 

The remainder of this paper addresses these questions.  We will look at what makes a good cost model 

and what makes a poor one. We will examine how we use subjective parameters to give us outstanding 

model behavior, and how those same subjective parameters can hurt our ability to provide accurate 

estimates.  We will take time to understand how human psychology biases us in our quest to develop 

good cost models.  We will take a look at a simple cost model, and a simple cost estimate to see what 

can go wrong when we trust the model over trusting the data.  Finally, we will identify specific actions 

we can take to improve our models and how we use them. 

The purpose of this paper is not to denigrate cost models.  Au contraire! Cost models are vital to how we 

do our job.  We need powerful, sophisticated parametric cost models.  Rather, the purpose of this paper 

is to draw a distinction between cost estimating and cost analysis.  To demonstrate that by becoming 



better cost analysts, we can more effectively use the power we have available to us in our cost models 

to be better cost estimators.   

Building Parametric Cost Models 

Those of us who have been in the business for a few years know how to build a parametric cost model.  

You gather some data, either data from your company or government organization, or from somebody 

else’s company or government organization.  You normalize the data to make it as homogeneous as 

possible, then you start looking for relationships between and cost and various technical or 

programmatic parameters. Once we have found some likely candidates, we start doing regression 

analysis or employ some other minimization technique to determine the model coefficients.  We 

calculate statics such as p-values and perform analyses of variance (ANOVA) to help us determine what 

is significant and what is not.  Finally, promising parameters are subjected to tests of logic to make sure 

there is a reasonable explanation for why a certain parameter would turn out to be a significant “cost 

driver.” 

The underlying assumption behind the process described above is that if we have reasonably good data, 

use statistics appropriately, and have sound logic we will get a good cost model.  But is that necessarily 

true?  Regina Nuzzo, in a Nature article published online titled “How Scientists Fool Themselves – and 

How They Can Stop,” makes the following assertion: 

In today’s environment, our talent for jumping to conclusions makes it all too easy to 

find false patterns in randomness, to ignore alternative explanations for a result or to 

accept ‘reasonable’ outcomes without question – that is, to ceaselessly lead ourselves 

astray without realizing it. 

In his book “The Signal and the Noise” Nate Silver quotes Tomaso Poggio, an MIT neuroscientist who 

studies how our brains process information.  Here is what Poggio says: “The problem is that these 

evolutionary instincts sometimes lead us to see patterns when there are none.”  Thus, and this is not 

surprise to anyone with children, we come programmed from the womb to try and make sense of the 

world.  This programming was very useful to our ancestors when, as they hunted for food on the African 

Savanna, had to make life or death decisions in circumstances were information was incomplete and 

experience was everything.  Unfortunately, this programming can lead us astray when it comes to 

making sense of the modern world.   

The need to make sense of our world combined with other biases in our thinking, as described in my 

paper “The Psychology of Cost Estimating,” can lead us to make serious and consequential mistakes 

when developing our models.  For example, the optimism bias can cause us to be overly confident that 

the patterns we see in the data are truly there.  The confirmation bias can cause us to reject information 

that indicates a specific parameter may not be as logical as it appears.  The bandwagon bias can lead to 

group think where we mutually support each other in reaching the same conclusion.  These biases cause 

us to make mistakes that lead to models that might look good, but may not be good for us. In the next 

section I talk about some of the more common mistakes we make. 

Sins of Cost Modeling 

Our space systems data is messy.  Despite our best efforts to collect and normalize NASA space flight 

hardware data in a consistent manner, the end result are data sets that are non-homogeneous.  For 



example, Exhibit 1 shows a graph of robotic spacecraft electrical power subsystem cost versus Beginning 

of Life (BOL) power.  The data for these spacecraft were collected using a standard NASA data collection 

process called a Cost Analysis Data Requirements (CADRe) document.  The data was normalized by the 

same team of cost engineers to adjust for inflation, program content, and differences in cost accounting.  

These missions are all in a low earth or a near earth orbit (lunar, L1, etc.).  All these spacecraft use solar 

arrays for electrical power generation. 

 

Exhibit 1. Spacecraft Electrical Power Subsystem Cost. 

Despite the efforts to create a homogeneous data set, the amount of scatter in the data is large, in some 

cases more than an order of magnitude difference in cost for the same BOL power.  The rather poor R2 

indicates a surprising lack of predictive power for such a logical technical parameter.  Interestingly, the 

degree of scatter shown in Exhibit 1 is not unusual.  In fact, it is quite normal for space systems cost 

data.  Obviously, there are other factors at work here that have a significant influence on the cost. 

The non-homogeneity in space systems cost data is driven by three factors.  Number one, each NASA 

mission is a unique undertaking, with specific science requirements that often necessitate custom 

technical solutions.  The second factor is the relatively small size and specialization of the space flight 

hardware industrial base.  There are very few builders of robotic spacecraft and these builders rely on a 

small number of specialized companies to provide key components such as star trackers and solar array 

cells.  Components and systems are made to order with considerable touch labor.  Finally, space system 

data is data of opportunity.  Unlike data collected in a laboratory or on a factory floor, cost modelers 

cannot manage the environment that creates the data or perform repeatable experiments under 

controlled conditions. 

The lack of orderly behavior in space systems cost data creates a fertile environment for analysts to 

make well-intentioned mistakes.  After all, we are only following our biological mandate to make sense 

of confusion, order out of disorder.  But our attempts to solve the problem may actually cause us to do 

more harm than good.  So while not specifically a sin itself, data non-homogeneity may be the root of all 

cost modeling evil. 
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The first sin I want to talk about is the sin of confusing correlation with causation.  Most of the 

independent variables used in parametric models are associative or scaling, not causative.  For example, 

weight is a common input to parametric models, yet every experienced analyst knows that in some 

cases reducing weight can actually increase cost (by going to more exotic materials or miniaturizing the 

electronics, for example).  Most analysts are good at rejecting independent variables that have little or 

no relationship logical relationship to the cost.  The danger comes in how we ascribe predictive power to 

those parameters that do past the logic test. 

In my opinion, one of the worst terms in parametric cost modeling is “cost driver.”  Because our 

parameters are most often associate or scaling, they no more “drive” cost than your dog can drive your 

car.  Unless the input parameter has a direct relationship to how the system is designed or built, we 

should banish the term “cost driver” from our lexicon.  Otherwise, we are bestowing upon a parameter 

an undeserved and misleading title, a title that implies that one can control the predicted cost by 

controlling the parameter value. 

Sometimes a model builder does not take into account the correlation between input parameters.  

Failure to consider this correlation can lead to inputs that are largely duplicative in their predictive 

power, add nothing to the predictive capability of the model, and in some case cause parametric 

coefficients to become unstable.  When this happens multicollinearity is said to exist.  A good test to 

determine if your model has multicollinearity is the Variance Inflation Factor (VIF).   Generally, 

multicollinearity may be a problem if the VIF exceeds 4 or 5, and under no circumstances should it 

exceed 10.  There are cases where stakeholders or others with a vested interest in a model insist that a 

certain parameter must be in the CER because they know (based on knowledge, experience, legend, 

etc.) that that parameter is what drives cost.  When such parameters are included it can mislead 

customers into believing that certain decisions determine cost, when the reality is just the opposite. 

Another way to bias your model is to focus on the aforementioned R2 statistic.  R2 is a quick way to 

determine the goodness of your model, and every model builder wants to be able to show off a high R2 

value (like 0.9, or better yet, 0.95).  R2 is useful, but R2 can be manipulated.  There are two very easy 

ways to improve R2.  The first is to cherry pick the data by removing outliers.  In some cases, there may 

be a legitimate reason for removing a data point, such as known issues with content or completeness of 

the cost data.  In other cases there may not be a known problem but the data point is so far from the 

general trend that some unidentified issue must be causing it to be out of family.  It is certainly 

appropriate to scrutinize outliers to make sure there is not a problem, but; it is also not appropriate to 

eliminate a data point simply because doing so increases the R2 value.  Something to consider if you find 

a problem with an outlier: you should apply the same level of scrutiny to your better behaved data 

points to make sure they don’t have the same problem.  Because we are using data of opportunity we 

must be careful to make sure that we are not seeing problem as unique when in fact it is systematic. 

The second way to boost the R2 value is to increase the number of independent variables.  As the 

number of input variables approach the number of data points, the model appears to be explaining 

more and more of the variation in the data.  This happens because each time you add a parameter, you 

are forcing the model to account some of the variation in the dependent variable.  However, the reality 

is that you are probably explaining random noise in the data rather creating a model that better predicts 

cost.     



The general term for this problem is overfitting.  The challenge we in the cost profession face is that 

because our data sets are small and the data is noisy, we are prone to use overfitting as a way to achieve 

an acceptable R2 value.  But this behavior comes with consequences.  In his book “The Signal and the 

Noise” Nate Silver makes the following point: 

Overfitting represents a double whammy: it makes our model look better on paper but 

perform worse in the real world.  Because of the latter trait, an overfit model eventually 

will get its comeuppance if and when it is used to make real predictions.  Because of the 

former, it may look superficially more impressive until then, claiming to make very 

accurate and newsworthy predictions and to represent an advance over previously 

applied techniques…But if the model is fitting noise, it has the potential to hurt the 

science. 

Thus by overfitting we can easily make cost models that look good but give poor predictions, with the 

cost estimating and analysis profession being the ultimate loser.  Fortunately a number of statistical 

tests (such as t-tests, p-values, sequential F-tests, etc.) exist so that it should be easy for the analyst to 

identify, as additional parameters are added to the model, when the point of diminishing returns has 

been reached. 

The final sin I want to discuss is the misuse of subjective parameters.  Subjective parameters seem to be 

especially favored in the cost estimating field because they are a handy way to model the otherwise 

unexplained randomness in the data.  These parameters go by names such as new design, heritage, or 

complexity.  They represent well-meaning attempts to improve the predictive power of a model, but in 

the end can mislead us and our customers.   

The danger with subjective parameters comes from the judgment required to define the parameter and 

the judgment used in assigning subjective values (or ratings) to the data.  Most subjective parameters 

have rather vague and amorphous definitions.  Take “new design” for example.  In the space business, 

almost everything flown in space for the last 40 years owes its design, at least in part, to something that 

has flown before.  Yes, there are specific instances where something new was flown such as the first 

time gallium-arsenide solar cells were used or the first flight of the solid state data recorder.  However 

these applications of new technology tend to be a rather small percentage of a total space system.  In 

fact, our data shows that most spacecraft use well understood technologies packaged in new and 

unique ways.  Therefore, determining the amount of “new design” in a space system becomes a highly 

subjective exercise with the outcome subject to biased thinking. 

We misuse subjective parameters when we put them into our regression analyses and treat them the 

same as more objective system parameters.  This creates the illusion that a judgment based parameter 

is equal in value to an objective parameter.  This illusion is further reinforced when these parameters 

turn out to have a predictive value, as measured by the statistics, which is at least as good as the 

objective parameters.  However, what we are really doing is cleverly modeling the noise.  I will 

demonstrate how easy it is to do this in the following section. 

To further our abuse of subjective parameters, once we incorporate them into our models we treat the 

output of those models deterministically.  In other words, we act as if the reduction in model error 

through the incorporation of the subjective parameter is real, and not a as a new source of estimating 

error.  One could argue that by doing a cost risk analysis we can address the uncertainty associated with 



the subjective parameter value and get results similar to the model uncertainty without the subjective 

parameter.  I, however; contend that the optimism bias keeps us from putting a sufficiently large range 

on the subjective parameter, thus creating a false sense of comfort in our estimate. 

For example, in Exhibit 2 I have taken a chart from Christian Smart’s paper “Covered with Oil: 

Incorporating Realism in Cost Risk Analysis.”  The s-curves in Exhibit 2 are based on actual risk analyses 

over time for a real NASA project, and demonstrate unequivocally how optimistic we can be, especially 

in the early phases of a project. 

 

Exhibit 2. S-curves over time (Smart, 2015). 

Not only does the s-curve move to the right by almost a factor of 2.5 in just a little more than two years, 

but the curve also begins to flatten, indicating that the analyst has less certainty about the outcome 

than in the earlier analyses.  While this behavior is (fortunately) not typical of all NASA projects, analysis 

of NASA and DoD cost growth data (Smart 2010 and Prince 2015) shows that the average amount of cost 

growth on space and high tech projects is generally around 50%, significantly greater than the typical 

30% or 35% reserve placed on most estimates. 

The Lure of Subjective Parameters 

Much like the “Dark Side of the Force” from “Star Wars” mythology, subjective parameters seduce the 

cost model developer.  This seduction comes from their power to explain the random noise in our data, 

to improve the model statistics, and to enable the estimator to fine-tune the estimate to reflect their 

evaluation of a new system.  To illustrate how this occurs look at the graph in Exhibit 3. 
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Exhibit 3. Cost versus Mass for a Spacecraft Subsystem. 

Exhibit 3 shows the cost versus mass for a specific earth-orbiting spacecraft subsystem.  Like the data 

shown in Exhibit 1, there is a significant amount of scatter (or noise).  The R2 value of 0.5229 shows that 

mass alone can only explain a little more than 50% of the variation in cost.   

So let’s see what happens when we use a subjective parameter to explain the noise in the data.  In this 

case, the subjective parameter is called New Design.  Our New Design scale has eight categories, with 

category 1 representing the data points with the greatest amount of new design, and category 8 

representing the data points with the least amount of new design.  The actual New Design values used 

for the categories range from 100% for category 1; followed by 91%, 79%, 64%, 43%, 25%, and 15% for 

categories 7 through 2, respectively, all the way down to 5% new design for category 8.  Each of the data 

points is assigned to a New Design category is based on the analyst’s judgment regarding the technology 

used, the design inheritance from previous spacecraft, and the overall state of the art at the time the 

subsystem was developed.   

In Exhibit 4, a color coding scheme shows the result of assigning each data point to a New Design 

category. 



 

Exhibit 4: New Design Category Assignments for all Data. 

In Exhibit 4 the trend is clear.  While there is substantial overlap between categories, in general, each 

category represents a reduction in cost as compared to the trend line.  And, with the exception of a total 

overlap between categories 1 and 2, the average cost per pound decreases consistently from category 

to category.  To the casual observer, this New Design categorization seems logical and reasonable.  In 

practice it proves to be a powerful tool for building a better cost model. 

Look at Exhibit 5.  Exhibit 5 shows the power of subjective parameters and why it can be so hard to 

avoid using them.  With an R2 value of 0.9245 we have gone from a mediocre mass-based CER to 

wonderful two parameter CER, without any cherry picking of the data or overfitting the model.  In 

addition the statistics are excellent, as can be seen in Exhibit 6. 



 

Exhibit 5: CER with Mass and New Design. 

 

 

Exhibit 6: Regression Statistics for Mass and New Design CER. 

You can see why the lure of using subjective variables is so strong.  Why live with noisy data and a 

mediocre CER when you can use a logical rating scheme to create a significantly improved model?  

Better yet, you get a model that produces expected results: the estimator can now show the cost 

savings from using an existing design or the cost penalty for incorporating a new technology.  But when 

we go down this path we are giving in to our biases and giving in to bad modeling practices, practices 

that create models that deceive us and we can use to deceive our customers. 

Regression Statistics

Multiple R 0.9615

R Square 0.9245

Adjusted R Square 0.9220

Standard Error 0.4658

Observations 65

ANOVA

df SS MS F Significance F

Regression 2 164.6983 82.3492 379.4792 0.0000

Residual 62 13.4544 0.2170

Total 64 178.1527

Coefficients Standard Error t Stat P-value

Intercept -0.7020 0.2427 -2.8928 0.0053

ln(weight) 0.7783 0.0510 15.2471 0.0000

ln(newdesign) 1.3560 0.0747 18.1579 0.0000



For those of you who continue to hold on to the belief that a good cost engineer can develop 

meaningful subjective parameters that explain the noise in our data, let me offer the following example.  

Exhibit 7 shows an actual versus estimated graph using the same data set as Exhibit 5, but different 

values for the new design parameter. 

 

Exhibit 7. Cost versus Mass and New Design with Different New Design Parameter Values. 

As you can see, the graphs in Exhibits 5 and 7 look very similar and the R2 values for each are almost 

identical (detailed statistics are provided in Appendix A).  From that visual examination one could 

conclude that since the cost and mass values are the same, the new design parameter values much be 

similar.  Now look at the table in Exhibit 8. 

 

Exhibit 8: New Design Category Parameter Values. 

Exhibit 8 shows the parameter values for the eight New Design Categories.  Look at the values in the 

column titled “Exhibit 5 Parameter Values.”  These purport to represent the percentage of new design 

New Design 

Category

Exhibit 5 

Parameter Values

Exhibit 7 

Parameter Values

Category 1 1.00 8

Category 2 0.91 7

Category 3 0.79 6

Category 4 0.64 5

Category 5 0.43 4

Category 6 0.25 3

Category 7 0.15 2

Category 8 0.05 1



present in the subsystem.  Thus for a New Design Category 2, 91% (0.91) of the subsystem is a new 

design.  For a category 3, 79% is a new design, and so on.  Look at the values in the last column, the one 

titled “Exhibit 7 Parameter Values.”  These are the values used in the regression for Exhibit 7.  Note that 

they are integers ranging from a value of 8 for the largest amount of new design to a value of 1 for the 

least.  This is an ordinal scale, representing the order of the new design categories. 

Now look again at the scatter of the data and the R2 values in Exhibits 5 and 7.  They are almost 

identical.  Yet the values used for the New Design parameter are drastically different.  How can this be?  

The reason both values work is that the power of this particular New Design parameter lies not in its 

assigned value, but in the fact that it provides a categorization of the data in a systematic and logical 

way that accounts for the noise.  Look back at Exhibit 5.  If you start with New Design Category 8 and 

work your way to New Design Category 1, you will see the cost of the subsystem increases with each 

category.  There is significant overlap, but the trend is clear.   

What we are seeing is a case of imposing an arbitrary structure on random noise.  The New Design 

parameter categories and values are a sincere attempt to capture what we intuitively know about high 

technology systems: the greater the amount of new design the higher the cost, and vice versa.  The 

model looks good and it behaves correctly, yet is has no more predictive power than a simple mass-

based model, and can easily fool us and our customers. 

The Practice of Self-Deception 

There are several biases that affect how we develop our models.  These biases come into play whether 

or not we use subjective parameters.  However, subjective parameters make it easier for these biases to 

affect our decision making and our models. 

Several of these biases I discussed in my paper “The Psychology of Cost Estimating.”  Others were 

identified by Regina Nuzzo in the article I quoted earlier.  Below is a short list of biases that can 

contribute to deceptive modeling practices along with their definitions. 

Asymmetric Attention: When we give expected outcomes little scrutiny yet rigorously check non-

intuitive results we are displaying Asymmetric Attention.  The problem caused by Asymmetric Attention 

is that is can lead us to overlook errors in our favor.  For example, Asymmetric Attention is likely to 

cause us to pay limited attention to a subjective parameter like our New Design variable as long as that 

parameter behaves in a way we expect.  

Representativeness: Representativeness is our tendency to relate something new or novel to something 

we know or are familiar with.  The representative bias gets us into trouble by causing us to see patterns 

in randomness and to underappreciate how random a random outcome can truly be.  Therefore our 

tendency is to try to impose an arbitrary structure on random noise.  The fact that such a structure 

works not a justification for doing so. 

What you see is all there is (WYSIATI): WYSIATI is a phrase coined by Daniel Kahneman to describe how 

our minds can quickly develop a coherent story out of limited information.  Two surprising facts emerge 

from WYSIATI.  First, the less information we have the more confident we are in our coherent story, 

especially a story about a subjective parameter.  Second, the coherent stories that we build often ignore 

probability and statistics.   



Halo/Horns Effect: The Halo/Horns effect (also known as the confirmation bias) is our tendency to 

emphasize data that agrees with our belief or intuitive assessment, and to discount information that 

disagrees with our position.  The Halo/Horns effect can also cause us to look for (or be more open to 

accepting) data that confirms our position or opinion.  Obviously, the danger with this bias is that we will 

overlook or discount important information that is inconsistent with the desired outcome. 

Plausibility Effect: When we believe the more plausible outcome over the more probable outcome, we 

are falling victim to the plausibility effect.  The Plausibility Effect occurs because we like explanations 

that address all of the facts, even if those facts are the result of random events. In other words, we like 

stories that rationalize the results.  Cost modelers fall victim to the Plausibility Effect whenever we 

confuse a good story about the data rather than letting the data speak for itself.  A related bias, called 

Storytelling, speaks to how we will find stories to rationalize the results we see. 

Attractiveness:  Appearances matter.  Psychologists have known for years that people assign more 

favorable characteristics to attractive people or products.  We are also more likely to believe a good 

presenter over a poor presenter.  Attractiveness and the Plausibility Effect and the Confirmation Bias are 

interrelated.  We like a good (attractive) story that makes sense and explains all the variation in the 

data, especially if it confirms a previously held belief or opinion. 

A Bias-Free Cost Model 

Now that understand the problem of biases and subjective parameters, let’s build a model using only 

objective parameters.  For this particular model we have a small data set, only nine points.  Also, there is 

significant scatter in the data, as can be seen in Exhibit 9. 

 

Exhibit 9: Simple Weight-Based Cost Model. 

While the trend is reasonable, the significant scatter in the data results in a rather poor R2 of 0.4389.  

The danger at this point, as we have learned, is that we could use a bad modelling practice such as 

overfitting the data or using a subjective parameter.  But what if we found a second objective parameter 



that provided substantial predictive power?  Exhibit 10 shows the impact of adding a date parameter to 

the model, in this case an indicator variable identifying data points developed before and after 1970. 

 

Exhibit 10: Weight and Date Cost Model. 

Adding the indicator variable significantly improves the quality of the CER (a more complete listing of 

the pertinent statistics for both CERs is given in Appendix B).  But the question needs to be asked: why 

1970?  Space systems developed prior to 1970 were pushing the art in terms of manufacturing 

capability, technology, and were often schedule driven.  After 1970 advancing computer technology 

enabled better design processes, with fewer test articles and systems tests.  In general the technology 

was better understood, schedule pressures were reduced, and the many failures of the early Space Age 

created a large knowledge base of what did and did not work.  Thus by both statistics and logic, the CER 

shown in Exhibit 10 is far superior to the CER in Exhibit 9. 

Exhibit 11 compares some early estimates for a new space system similar to those in our model.  If we 

are using our model to validate these early estimates, which are a mixture of parametric and 

engineering build-up, we would probably say they are conservative, since they are all above the post-

1970 trend line. 



 

Exhibit 11: Comparison of Model to Early Estimates. 

Exhibit 12 shows the same plot with more recent cost estimates.  These more recent estimates are 

approaching the pre-1970 trend line.  Obviously, the project did not get the message that anything 

developed after 1970 should not cost this much.  So what went wrong, why did this model, which was 

built on objective information, which is not over-subscribed, which has no biases, fail? 

 

Exhibit 12: Comparison of Model to Recent Estimates. 

Take a look at Exhibit 13.  In Exhibit 13 I have numbered the historical data points and identified one or 

more pertinent characteristics about each one.  Note that six of the nine data points are first of a kind 

systems but that the three lowest cost data points (5, 6, & 7) contain significant heritage from data point 

1.  Data points 5, 6, 7, and 8 were developed to interface with a pre-existing system, simplifying 

development.  Data point 9 is significantly less complex than the other eight.  In terms of size and 



function, data points 3 and 4 are the closest analogs to the new system we are developing.  Therefore, 

we should not be surprised that the cost appears to be gravitating towards these analogs.   

 

Exhibit 13: A Different View of the Model Data. 

What is striking about Exhibit 13 is that is illustrates a story about the data that is much more complex 

and nuanced than the two variable model.  In other words, each data point has a story to tell.  And when 

we develop parametric models we either ignore these stories because it is difficult to synthesize them 

into a single number or we oversimplify them to create a representative value for modeling.   

So what is a responsible cost estimator supposed to do?  If she tries to address the uniqueness of the 

data, she risks over-specifying the model or creating unsupportable subjective parameters.  If she sticks 

with simple objective parameters, she may still fall victim to biases, and the model may yield 

unsatisfactory results.  The solution to this problem lies not in our approach to modeling, but in our 

approach to how we use our models, and how we use our data. 

Parametric Cost Estimating and Data 

Parametric cost estimators are defined by their models, but in reality it is our data that separates us 

from other approaches to cost estimating (one could argue, quite successfully I believe, that all cost 

estimating is data driven, but that is a topic for another paper).  A model is simply a representation of 

reality, and in our particular situation, given the amount of random noise in our data, a rather pale 

representation at that.  Therefore, to be an accomplished parametric cost estimator, you must know 

and understand the historical data that is the basis for your model(s) and that is most relevant to the 

system you are costing.  You cannot separate parametric cost estimating from a knowledge and 

understanding of the data! 

Parametric cost models are valuable and useful tools, but they must be used intelligently.  The power of 

a parametric cost model comes not from its statistical prowess, but from its ability to enable to analyst 

to extrapolate from the known to the unknown.  This is why the connection between the data and the 

model is so important.  Using a model free of the data can give you a reasonable answer, but if the 



model is the only basis for your estimate then you may be on thin ice.  Relevant data should be the 

starting point for your cost estimate and it should also form the foundation for validating your estimate.  

A good parametric model used in conjunction with relevant data makes for an estimate that is credible, 

supportable, and defendable. 

Making a Better Cost Model 

When you are working with data of opportunity, creating a parametric cost model is hard.  NASA data is 

full of random noise, noise that comes from how the data was collected and analyzed, but more 

importantly, noise from all of the random events that happen during a system’s development.  Often the 

parametric cost modeler is faced with a choice: engage in R2 boosting practices such as cherry picking 

the data or overfitting the model; use subjective parameters to explain the noise; or embrace the 

messiness, the noise, the randomness.  My recommendation is that you embrace the mess. 

Embracing the mess means that you accept that there are limitations as to how far our models can go in 

explaining the underlying data as well as the cost of future systems.  It also means that you are going to 

rely on the story behind the data to explain the variation in the data and support your cost estimate.  

You are going to honor what the data is telling you, not try to ignore it or oversimplify it or explain it 

away.  When you embrace the mess you will let the data guide your model and your estimate.  The data 

will tell you if your cost should be higher or lower.  The data will provide the foundation. 

To make a better model you must learn to question everything.  We are good at questioning non-

intuitive results, but we must learn to question our intuitive results as well.  A correct intuitive result 

may be right for the wrong reason.  An excellent example is the New Design parameter we investigated 

earlier.  The percent new design values of 5%, 15%, 25%, etc. gave intuitive results when used in the 

regression analysis.  But as I showed in Exhibit 7, it was not the new design values but rather the 

stratification of the data (and the imposition of an arbitrary structure on the randomness) that led to 

these results. 

The flip side of not questioning intuitive results is the attempt to make non-intuitive results intuitive. 

Here is how it works.  You are developing a new hardware CER.  The technical people tell you that 

parameter X is the most important parameter for determining the cost.  You regress cost against 

parameter X and you get lousy results.  The typical human response is to try and find some causative 

factor (bad data, outliers, etc.) to explain the non-intuitive outcome.  But it could also be true that the 

technical experts are doing their own storytelling, that they have developed their own mythology based 

on representativeness to explain what drives cost.  It is also possible that parameter X is an important 

input into how the technical expert does their job, but not to the overall cost of the system (Kahneman’s 

WYSIATI). 

Another idea for making better models is to have the process and the results reviewed by an 

independent, non-advocate team.  Getting an independent review can raise questions you did not think 

about and can force you to defend your choices.  In the process of explaining your rationale to an 

independent party problems in logic or approach may be discovered.  An independent reviewer may 

also suggest an alternative approach, explanation, or technique that you did not consider.  And don’t 

limit your review to the process and results, have someone check the math.  Mathematical mistakes 

that don’t create non-intuitive results may not be caught, invalidating an outcome. 



A final suggestion for improving our models is to have a different team (or analyst) take the data and 

develop their own model.  If the independent analysts reach similar conclusions regarding input 

variables, transformations, and minimization techniques; then that can validate your model.  Even if the 

independent team reaches different conclusions that does not necessary invalidate your work, but it will 

require that you re-examine your process and approach to ensure that you have not biased the 

outcome, overlooked an alternative explanation for the behavior of the data, or made a mistake. 

I realize that resources (both time and people) may make the independent development team approach 

difficult, if not impossible, to implement.  However, at NASA Marshall Space Flight Center (MSFC) we are 

making the data we use to develop our CERs for the Project Cost Estimating Capability (PCEC) available 

to the entire NASA cost community.  We are hoping that other cost analysts will take the data and 

perform their own model developments.  I realize that within the larger parametric cost community 

there are different schools of thought concerning equation forms, minimization criteria, etc.  If two 

different groups approach their analysis of a data set from very different mindsets, it could lead to an 

interesting comparative analysis where we all learn something unexpected, and possibly useful. 

Improving Model Accuracy 

We have become quite adept at creating parametric models that reproduce the underlying data with a 

reasonable level of accuracy.  But is that a real measure of the quality of the model?  After all, the 

purpose of our models is to help us estimate the cost for something that has never been built.  What if 

we measured the quality of our cost models by how well they estimate the cost for these new systems? 

In the space business development cycles are often long, on the order of 4 to 8 or more years.  The 

number of system changes made between the initial estimates and what it actually built also make it 

difficult to get useful feedback on how well a model performs.  Still, the best way to determine model 

performance is to use it to make a prediction and then see how well that prediction turns out.  

Benchmarking past estimates to actuals should be standard operating procedure for all cost 

organizations, both as a way to evaluate the model(s) and (perhaps more importantly) as a way to 

evaluate the organization’s estimating process. 

Another approach to improving model accuracy is to use one or more resampling techniques, such as 

bootstrapping, cross-validating, or jackknifing.  Bootstrap resampling involves drawing a random sample 

from your data set, with replacement, that is the same size as your model data set.  In other words, if 

your model is based on N data points, you will draw a sample of size N from your model data, replacing 

(or returning) the drawn data point each time.  By using Monte Carlo simulation to run thousands of 

trials, you can use bootstrapping to estimating the confidence interval on your model coefficients as 

well as a prediction interval for your estimates. 

Jackknifing involves recalculating the model coefficients N-1 times (N being the size of you data set), 

each time leaving out a different data point.  Using the Jackknife technique you can calculate a mean 

and standard deviation for your model coefficients as well as the amount of bias in your baseline model.  

The Jackknife technique is sometimes preferred over bootstrapping due to its ease of calculation and 

repeatable results. 

Cross-validation is a technique particularly well suited for assessing how well a cost model will perform 

in the real world.  In cross-validation you divide your data set into a training (or known) data set and a 



validation (or unknown) data set.  Typically this is done multiple times, each time using different data 

points for the training and validation data sets.  There are various methods for selecting the size and 

composition of the training and validation sets (Wikipedia lists several).  Since the purpose of cross-

validation is to measure model performance, you can calculate statistics such as the mean squared error 

or the mean absolute deviation to determine estimating error. 

A third approach to improving model accuracy is to benchmark a model against new data.  Obviously, 

the new data should be of the same type used to develop your model (i.e. using a spacecraft data to 

benchmark a spacecraft cost model).  The technique is simple.  Take the cost for a recently completed 

system, normalize the cost as necessary so that it is consistent with your model output, develop an 

estimate for the system using your model, and compare the results to the actuals.  The advantage of this 

approach is that you get unbiased feedback on how your model performed.   If the costs are reasonably 

close (I will leave it up to you to define “reasonable”) then your model is doing good, if the costs are not 

close, then your model may be lacking in some way.  

Two things to consider when benchmarking against new data.  While a poor result indicates your model 

accuracy may be low, a good result is not proof that your model is accurate.  In other words, good 

results do not guarantee continued good results.  The other problem with benchmarking is that unless 

your model estimates something that produces large numbers of actuals, you will not have sufficient 

data to develop a statistical estimation of model performance.  This is a real problem at NASA, where 

even in a good year we may only launch 5 or 6 science missions and decades can elapse between the 

development of human spaceflight systems. 

Final Thoughts and Conclusions 

Building a parametric cost model is hard work.  The data is noisy and often does not behave like we 

want it to.  We need statistics to give us an indication of the goodness of our models, but; statistics can 

be manipulated and mislead.  On top of all of that, our own very human biases can lead us astray; 

causing us to see patterns in the noise and draw false conclusions from the data. 

Yet, it is the data itself that is the foundation for making better cost estimates and cost models.  I believe 

the mistake we often make is we believe that our models are representative of the data; that our 

models summarize the experiences, the knowledge, and the stories contained in the data.  However, it is 

the opposite that is true.  Our models are but imitations of reality.  They give us trends, but not truth.  

The experiences, the knowledge, and the stories that we need in order to make good cost estimates is 

bound up in the data.  You cannot separate good cost estimating from a knowledge of the historical 

data. 

One final thought.  It is our attempts to make sense out of the randomness that leads us astray.  In order 

to make progress as cost modelers and cost estimators, we must accept that there are real limitations 

on our ability to model the past and predict the future.  I do not believe we should throw up our hands 

and say this is the best we can do.  Rather, to see real improvement we must first recognize these 

limitations, avoid the easy but misleading solutions, and seek to find ways to better model the world we 

live in.  I don’t have any simple solutions.  Perhaps the answers lie in better data or in a totally different 

approach to simulating how the world works.  All I know is that we must do our best to speak truth to 

ourselves and our customers.  Misleading ourselves and our customers will, in the end, result in an 

inability to have a positive impact on those we serve. 
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Appendix A 

Detailed Statistics for Exhibit 5. 

 

 

 

  

Regression Statistics

Multiple R 0.9615

R Square 0.9245

Adjusted R Square 0.9220

Standard Error 0.4658

Observations 65

ANOVA

df SS MS F Significance F

Regression 2 164.6983 82.3492 379.4792 0.0000

Residual 62 13.4544 0.2170

Total 64 178.1527

Coefficients Standard Error t Stat P-value

Intercept -0.7020 0.2427 -2.8928 0.0053

ln(weight) 0.7783 0.0510 15.2471 0.0000

ln(newdesign) 1.3560 0.0747 18.1579 0.0000



Appendix B 
Detailed Statistics for Exhibit 7. 

 

Regression Statistics

Multiple R 0.9640

R Square 0.9294

Adjusted R Square 0.9271

Standard Error 0.4505

Observations 65

ANOVA

df SS MS F Significance F

Regression 2 165.5706 82.7853 407.9359 0.0000

Residual 62 12.5821 0.2029

Total 64 178.1527

Coefficients Standard Error t Stat P-value

Intercept -4.7301 0.2263 -20.9025 0.0000

ln(weight) 0.7784 0.0493 15.7774 0.0000

ln(newdesign) 2.0452 0.1083 18.8909 0.0000


