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Introduction

From its roots in the World War Il application of learning curve theory to the problem of aircraft
production, parametric cost modeling and parametric cost estimating has grown to be a valuable tool
for predicting the cost of complex and unique systems. Commercial parametric cost models are
available to estimate almost any system, large industrial organizations and government agencies invest
significant resources in developing and maintaining parametric estimating tools and capabilities, and
professional organizations such as ICEAA provide a forum for exchanging ideas and promoting the
growth of the profession as well as estimating professionals.

Over the decades parametric cost models have grown in capability and sophistication. RCA PRICE
marketed the first general purpose parametric cost model in 1975. PRICE proved to be so popular that it
spawned the PRICE User’s Group which led directly to the creation of the International Society of
Parametric Analysts (ISPA), a forerunner of ICEAA. Other commercial tools followed, including SEER by
Galorath Incorporated and the now defunct FAST model. Models for estimating software cost
(COCOMO) or complex systems (COSYSMO) were developed by universities and became popular tools.
Government cost models, such as the NASA Air Force Cost Model (NAFCOM), were developed and
distributed for free, enabling cost estimators around the world to parametrically estimate the cost of
space flight hardware systems.

So, let’s be honest with ourselves: we love our cost models. Most parametric cost estimators become
masters of their models, able to explain (and justify) how specific model settings change a cost estimate
and why. We can make our models produce whatever number we need, often supported by technical
professionals who are usually very willing to help us make sure the model settings are consistent with
their design assumptions. The end result is an estimate that is logically consistent with the technical and
programmatic characteristics of the system. Not everyone may like our answer, but used properly our
models give us answers that are credible, supportable, and defendable.

But what if our models are not solving our estimating problems, but instead are the source of our
problems? What if our trust in our models is misplaced? What if our models are not as good as we
think they are? What if we are substituting being good model users for being good cost estimators?

The remainder of this paper addresses these questions. We will look at what makes a good cost model
and what makes a poor one. We will examine how we use subjective parameters to give us outstanding
model behavior, and how those same subjective parameters can hurt our ability to provide accurate
estimates. We will take time to understand how human psychology biases us in our quest to develop
good cost models. We will take a look at a simple cost model, and a simple cost estimate to see what
can go wrong when we trust the model over trusting the data. Finally, we will identify specific actions
we can take to improve our models and how we use them.

The purpose of this paper is not to denigrate cost models. Au contraire! Cost models are vital to how we
do our job. We need powerful, sophisticated parametric cost models. Rather, the purpose of this paper
is to draw a distinction between cost estimating and cost analysis. To demonstrate that by becoming



better cost analysts, we can more effectively use the power we have available to us in our cost models
to be better cost estimators.

Building Parametric Cost Models

Those of us who have been in the business for a few years know how to build a parametric cost model.
You gather some data, either data from your company or government organization, or from somebody
else’s company or government organization. You normalize the data to make it as homogeneous as
possible, then you start looking for relationships between and cost and various technical or
programmatic parameters. Once we have found some likely candidates, we start doing regression
analysis or employ some other minimization technique to determine the model coefficients. We
calculate statics such as p-values and perform analyses of variance (ANOVA) to help us determine what
is significant and what is not. Finally, promising parameters are subjected to tests of logic to make sure
there is a reasonable explanation for why a certain parameter would turn out to be a significant “cost
driver.”

The underlying assumption behind the process described above is that if we have reasonably good data,
use statistics appropriately, and have sound logic we will get a good cost model. But is that necessarily
true? Regina Nuzzo, in a Nature article published online titled “How Scientists Fool Themselves — and
How They Can Stop,” makes the following assertion:

In today’s environment, our talent for jumping to conclusions makes it all too easy to

find false patterns in randomness, to ignore alternative explanations for a result or to
accept ‘reasonable’ outcomes without question — that is, to ceaselessly lead ourselves
astray without realizing it.

In his book “The Signal and the Noise” Nate Silver quotes Tomaso Poggio, an MIT neuroscientist who
studies how our brains process information. Here is what Poggio says: “The problem is that these
evolutionary instincts sometimes lead us to see patterns when there are none.” Thus, and this is not
surprise to anyone with children, we come programmed from the womb to try and make sense of the
world. This programming was very useful to our ancestors when, as they hunted for food on the African
Savanna, had to make life or death decisions in circumstances were information was incomplete and
experience was everything. Unfortunately, this programming can lead us astray when it comes to
making sense of the modern world.

The need to make sense of our world combined with other biases in our thinking, as described in my
paper “The Psychology of Cost Estimating,” can lead us to make serious and consequential mistakes
when developing our models. For example, the optimism bias can cause us to be overly confident that
the patterns we see in the data are truly there. The confirmation bias can cause us to reject information
that indicates a specific parameter may not be as logical as it appears. The bandwagon bias can lead to
group think where we mutually support each other in reaching the same conclusion. These biases cause
us to make mistakes that lead to models that might look good, but may not be good for us. In the next
section | talk about some of the more common mistakes we make.

Sins of Cost Modeling

Our space systems data is messy. Despite our best efforts to collect and normalize NASA space flight
hardware data in a consistent manner, the end result are data sets that are non-homogeneous. For



example, Exhibit 1 shows a graph of robotic spacecraft electrical power subsystem cost versus Beginning
of Life (BOL) power. The data for these spacecraft were collected using a standard NASA data collection
process called a Cost Analysis Data Requirements (CADRe) document. The data was normalized by the
same team of cost engineers to adjust for inflation, program content, and differences in cost accounting.
These missions are all in a low earth or a near earth orbit (lunar, L1, etc.). All these spacecraft use solar
arrays for electrical power generation.
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Exhibit 1. Spacecraft Electrical Power Subsystem Cost.

Despite the efforts to create a homogeneous data set, the amount of scatter in the data is large, in some
cases more than an order of magnitude difference in cost for the same BOL power. The rather poor R?
indicates a surprising lack of predictive power for such a logical technical parameter. Interestingly, the
degree of scatter shown in Exhibit 1 is not unusual. In fact, it is quite normal for space systems cost
data. Obviously, there are other factors at work here that have a significant influence on the cost.

The non-homogeneity in space systems cost data is driven by three factors. Number one, each NASA
mission is a unique undertaking, with specific science requirements that often necessitate custom
technical solutions. The second factor is the relatively small size and specialization of the space flight
hardware industrial base. There are very few builders of robotic spacecraft and these builders rely on a
small number of specialized companies to provide key components such as star trackers and solar array
cells. Components and systems are made to order with considerable touch labor. Finally, space system
data is data of opportunity. Unlike data collected in a laboratory or on a factory floor, cost modelers
cannot manage the environment that creates the data or perform repeatable experiments under
controlled conditions.

The lack of orderly behavior in space systems cost data creates a fertile environment for analysts to
make well-intentioned mistakes. After all, we are only following our biological mandate to make sense
of confusion, order out of disorder. But our attempts to solve the problem may actually cause us to do
more harm than good. So while not specifically a sin itself, data non-homogeneity may be the root of all
cost modeling evil.



The first sin | want to talk about is the sin of confusing correlation with causation. Most of the
independent variables used in parametric models are associative or scaling, not causative. For example,
weight is a common input to parametric models, yet every experienced analyst knows that in some
cases reducing weight can actually increase cost (by going to more exotic materials or miniaturizing the
electronics, for example). Most analysts are good at rejecting independent variables that have little or
no relationship logical relationship to the cost. The danger comes in how we ascribe predictive power to
those parameters that do past the logic test.

In my opinion, one of the worst terms in parametric cost modeling is “cost driver.” Because our
parameters are most often associate or scaling, they no more “drive” cost than your dog can drive your
car. Unless the input parameter has a direct relationship to how the system is designed or built, we
should banish the term “cost driver” from our lexicon. Otherwise, we are bestowing upon a parameter
an undeserved and misleading title, a title that implies that one can control the predicted cost by
controlling the parameter value.

Sometimes a model builder does not take into account the correlation between input parameters.
Failure to consider this correlation can lead to inputs that are largely duplicative in their predictive
power, add nothing to the predictive capability of the model, and in some case cause parametric
coefficients to become unstable. When this happens multicollinearity is said to exist. A good test to
determine if your model has multicollinearity is the Variance Inflation Factor (VIF). Generally,
multicollinearity may be a problem if the VIF exceeds 4 or 5, and under no circumstances should it
exceed 10. There are cases where stakeholders or others with a vested interest in a model insist that a
certain parameter must be in the CER because they know (based on knowledge, experience, legend,
etc.) that that parameter is what drives cost. When such parameters are included it can mislead
customers into believing that certain decisions determine cost, when the reality is just the opposite.

Another way to bias your model is to focus on the aforementioned R? statistic. R?is a quick way to
determine the goodness of your model, and every model builder wants to be able to show off a high R?
value (like 0.9, or better yet, 0.95). R?is useful, but R? can be manipulated. There are two very easy
ways to improve R2. The first is to cherry pick the data by removing outliers. In some cases, there may
be a legitimate reason for removing a data point, such as known issues with content or completeness of
the cost data. In other cases there may not be a known problem but the data point is so far from the
general trend that some unidentified issue must be causing it to be out of family. It is certainly
appropriate to scrutinize outliers to make sure there is not a problem, but; it is also not appropriate to
eliminate a data point simply because doing so increases the R? value. Something to consider if you find
a problem with an outlier: you should apply the same level of scrutiny to your better behaved data
points to make sure they don’t have the same problem. Because we are using data of opportunity we
must be careful to make sure that we are not seeing problem as unique when in fact it is systematic.

The second way to boost the R? value is to increase the number of independent variables. As the
number of input variables approach the number of data points, the model appears to be explaining
more and more of the variation in the data. This happens because each time you add a parameter, you
are forcing the model to account some of the variation in the dependent variable. However, the reality
is that you are probably explaining random noise in the data rather creating a model that better predicts
cost.



The general term for this problem is overfitting. The challenge we in the cost profession face is that
because our data sets are small and the data is noisy, we are prone to use overfitting as a way to achieve
an acceptable R?value. But this behavior comes with consequences. In his book “The Signal and the
Noise” Nate Silver makes the following point:

Overfitting represents a double whammy: it makes our model look better on paper but
perform worse in the real world. Because of the latter trait, an overfit model eventually
will get its comeuppance if and when it is used to make real predictions. Because of the
former, it may look superficially more impressive until then, claiming to make very
accurate and newsworthy predictions and to represent an advance over previously
applied techniques...But if the model is fitting noise, it has the potential to hurt the
science.

Thus by overfitting we can easily make cost models that look good but give poor predictions, with the
cost estimating and analysis profession being the ultimate loser. Fortunately a number of statistical
tests (such as t-tests, p-values, sequential F-tests, etc.) exist so that it should be easy for the analyst to
identify, as additional parameters are added to the model, when the point of diminishing returns has
been reached.

The final sin | want to discuss is the misuse of subjective parameters. Subjective parameters seem to be
especially favored in the cost estimating field because they are a handy way to model the otherwise
unexplained randomness in the data. These parameters go by names such as new design, heritage, or
complexity. They represent well-meaning attempts to improve the predictive power of a model, but in
the end can mislead us and our customers.

The danger with subjective parameters comes from the judgment required to define the parameter and
the judgment used in assigning subjective values (or ratings) to the data. Most subjective parameters
have rather vague and amorphous definitions. Take “new design” for example. In the space business,
almost everything flown in space for the last 40 years owes its design, at least in part, to something that
has flown before. Yes, there are specific instances where something new was flown such as the first
time gallium-arsenide solar cells were used or the first flight of the solid state data recorder. However
these applications of new technology tend to be a rather small percentage of a total space system. In
fact, our data shows that most spacecraft use well understood technologies packaged in new and
unique ways. Therefore, determining the amount of “new design” in a space system becomes a highly
subjective exercise with the outcome subject to biased thinking.

We misuse subjective parameters when we put them into our regression analyses and treat them the
same as more objective system parameters. This creates the illusion that a judgment based parameter
is equal in value to an objective parameter. This illusion is further reinforced when these parameters
turn out to have a predictive value, as measured by the statistics, which is at least as good as the
objective parameters. However, what we are really doing is cleverly modeling the noise. | will
demonstrate how easy it is to do this in the following section.

To further our abuse of subjective parameters, once we incorporate them into our models we treat the
output of those models deterministically. In other words, we act as if the reduction in model error
through the incorporation of the subjective parameter is real, and not a as a new source of estimating
error. One could argue that by doing a cost risk analysis we can address the uncertainty associated with



the subjective parameter value and get results similar to the model uncertainty without the subjective
parameter. |, however; contend that the optimism bias keeps us from putting a sufficiently large range
on the subjective parameter, thus creating a false sense of comfort in our estimate.

For example, in Exhibit 2 | have taken a chart from Christian Smart’s paper “Covered with Qil:
Incorporating Realism in Cost Risk Analysis.” The s-curves in Exhibit 2 are based on actual risk analyses
over time for a real NASA project, and demonstrate unequivocally how optimistic we can be, especially
in the early phases of a project.
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Exhibit 2. S-curves over time (Smart, 2015).

Not only does the s-curve move to the right by almost a factor of 2.5 in just a little more than two years,
but the curve also begins to flatten, indicating that the analyst has less certainty about the outcome
than in the earlier analyses. While this behavior is (fortunately) not typical of all NASA projects, analysis
of NASA and DoD cost growth data (Smart 2010 and Prince 2015) shows that the average amount of cost
growth on space and high tech projects is generally around 50%, significantly greater than the typical
30% or 35% reserve placed on most estimates.

The Lure of Subjective Parameters

Much like the “Dark Side of the Force” from “Star Wars” mythology, subjective parameters seduce the
cost model developer. This seduction comes from their power to explain the random noise in our data,
to improve the model statistics, and to enable the estimator to fine-tune the estimate to reflect their
evaluation of a new system. To illustrate how this occurs look at the graph in Exhibit 3.
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Exhibit 3. Cost versus Mass for a Spacecraft Subsystem.

Exhibit 3 shows the cost versus mass for a specific earth-orbiting spacecraft subsystem. Like the data
shown in Exhibit 1, there is a significant amount of scatter (or noise). The R? value of 0.5229 shows that
mass alone can only explain a little more than 50% of the variation in cost.

So let’s see what happens when we use a subjective parameter to explain the noise in the data. In this
case, the subjective parameter is called New Design. Our New Design scale has eight categories, with
category 1 representing the data points with the greatest amount of new design, and category 8
representing the data points with the least amount of new design. The actual New Design values used
for the categories range from 100% for category 1; followed by 91%, 79%, 64%, 43%, 25%, and 15% for
categories 7 through 2, respectively, all the way down to 5% new design for category 8. Each of the data
points is assigned to a New Design category is based on the analyst’s judgment regarding the technology
used, the design inheritance from previous spacecraft, and the overall state of the art at the time the
subsystem was developed.

In Exhibit 4, a color coding scheme shows the result of assigning each data point to a New Design
category.
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Exhibit 4: New Design Category Assignments for all Data.

In Exhibit 4 the trend is clear. While there is substantial overlap between categories, in general, each
category represents a reduction in cost as compared to the trend line. And, with the exception of a total
overlap between categories 1 and 2, the average cost per pound decreases consistently from category
to category. To the casual observer, this New Design categorization seems logical and reasonable. In
practice it proves to be a powerful tool for building a better cost model.

Look at Exhibit 5. Exhibit 5 shows the power of subjective parameters and why it can be so hard to
avoid using them. With an R? value of 0.9245 we have gone from a mediocre mass-based CER to
wonderful two parameter CER, without any cherry picking of the data or overfitting the model. In
addition the statistics are excellent, as can be seen in Exhibit 6.
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Exhibit 5: CER with Mass and New Design.

Regression Statistics

Multiple R 0.9615
R Square 0.9245
Adjusted R Square 0.9220
Standard Error 0.4658
Observations 65
ANOVA
df SS MS F Significance F
Regression 2 164.6983 82.3492 379.4792 0.0000
Residual 62 13.4544 0.2170
Total 64 178.1527

Coefficients Standard Error t Stat P-value

Intercept -0.7020 0.2427 -2.8928 0.0053
In(weight) 0.7783 0.0510 15.2471  0.0000
In(newdesign) 1.3560 0.0747 18.1579  0.0000

Exhibit 6: Regression Statistics for Mass and New Design CER.

You can see why the lure of using subjective variables is so strong. Why live with noisy data and a
mediocre CER when you can use a logical rating scheme to create a significantly improved model?
Better yet, you get a model that produces expected results: the estimator can now show the cost
savings from using an existing design or the cost penalty for incorporating a new technology. But when
we go down this path we are giving in to our biases and giving in to bad modeling practices, practices
that create models that deceive us and we can use to deceive our customers.



For those of you who continue to hold on to the belief that a good cost engineer can develop
meaningful subjective parameters that explain the noise in our data, let me offer the following example.
Exhibit 7 shows an actual versus estimated graph using the same data set as Exhibit 5, but different
values for the new design parameter.
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Exhibit 7. Cost versus Mass and New Design with Different New Design Parameter Values.

As you can see, the graphs in Exhibits 5 and 7 look very similar and the R? values for each are almost
identical (detailed statistics are provided in Appendix A). From that visual examination one could
conclude that since the cost and mass values are the same, the new design parameter values much be
similar. Now look at the table in Exhibit 8.

New Design Exhibit 5 Exhibit 7
Category Parameter Values | Parameter Values
Category 1 1.00 8
Category 2 0.91 7
Category 3 0.79 6
Category 4 0.64 5
Category 5 0.43 4
Category 6 0.25 3
Category 7 0.15 2
Category 8 0.05 1

Exhibit 8: New Design Category Parameter Values.

Exhibit 8 shows the parameter values for the eight New Design Categories. Look at the values in the
column titled “Exhibit 5 Parameter Values.” These purport to represent the percentage of new design



present in the subsystem. Thus for a New Design Category 2, 91% (0.91) of the subsystem is a new
design. For a category 3, 79% is a new design, and so on. Look at the values in the last column, the one
titled “Exhibit 7 Parameter Values.” These are the values used in the regression for Exhibit 7. Note that
they are integers ranging from a value of 8 for the largest amount of new design to a value of 1 for the
least. This is an ordinal scale, representing the order of the new design categories.

Now look again at the scatter of the data and the R? values in Exhibits 5 and 7. They are almost
identical. Yet the values used for the New Design parameter are drastically different. How can this be?
The reason both values work is that the power of this particular New Design parameter lies not in its
assigned value, but in the fact that it provides a categorization of the data in a systematic and logical
way that accounts for the noise. Look back at Exhibit 5. If you start with New Design Category 8 and
work your way to New Design Category 1, you will see the cost of the subsystem increases with each
category. There is significant overlap, but the trend is clear.

What we are seeing is a case of imposing an arbitrary structure on random noise. The New Design
parameter categories and values are a sincere attempt to capture what we intuitively know about high
technology systems: the greater the amount of new design the higher the cost, and vice versa. The
model looks good and it behaves correctly, yet is has no more predictive power than a simple mass-
based model, and can easily fool us and our customers.

The Practice of Self-Deception

There are several biases that affect how we develop our models. These biases come into play whether
or not we use subjective parameters. However, subjective parameters make it easier for these biases to
affect our decision making and our models.

Several of these biases | discussed in my paper “The Psychology of Cost Estimating.” Others were
identified by Regina Nuzzo in the article | quoted earlier. Below is a short list of biases that can
contribute to deceptive modeling practices along with their definitions.

Asymmetric Attention: When we give expected outcomes little scrutiny yet rigorously check non-
intuitive results we are displaying Asymmetric Attention. The problem caused by Asymmetric Attention
is that is can lead us to overlook errors in our favor. For example, Asymmetric Attention is likely to
cause us to pay limited attention to a subjective parameter like our New Design variable as long as that
parameter behaves in a way we expect.

Representativeness: Representativeness is our tendency to relate something new or novel to something
we know or are familiar with. The representative bias gets us into trouble by causing us to see patterns
in randomness and to underappreciate how random a random outcome can truly be. Therefore our
tendency is to try to impose an arbitrary structure on random noise. The fact that such a structure
works not a justification for doing so.

What you see is all there is (WYSIATI): WYSIATI is a phrase coined by Daniel Kahneman to describe how
our minds can quickly develop a coherent story out of limited information. Two surprising facts emerge
from WYSIATI. First, the less information we have the more confident we are in our coherent story,
especially a story about a subjective parameter. Second, the coherent stories that we build often ignore
probability and statistics.



Halo/Horns Effect: The Halo/Horns effect (also known as the confirmation bias) is our tendency to
emphasize data that agrees with our belief or intuitive assessment, and to discount information that
disagrees with our position. The Halo/Horns effect can also cause us to look for (or be more open to
accepting) data that confirms our position or opinion. Obviously, the danger with this bias is that we will
overlook or discount important information that is inconsistent with the desired outcome.

Plausibility Effect: When we believe the more plausible outcome over the more probable outcome, we
are falling victim to the plausibility effect. The Plausibility Effect occurs because we like explanations
that address all of the facts, even if those facts are the result of random events. In other words, we like
stories that rationalize the results. Cost modelers fall victim to the Plausibility Effect whenever we
confuse a good story about the data rather than letting the data speak for itself. A related bias, called
Storytelling, speaks to how we will find stories to rationalize the results we see.

Attractiveness: Appearances matter. Psychologists have known for years that people assign more
favorable characteristics to attractive people or products. We are also more likely to believe a good
presenter over a poor presenter. Attractiveness and the Plausibility Effect and the Confirmation Bias are
interrelated. We like a good (attractive) story that makes sense and explains all the variation in the
data, especially if it confirms a previously held belief or opinion.

A Bias-Free Cost Model

Now that understand the problem of biases and subjective parameters, let’s build a model using only
objective parameters. For this particular model we have a small data set, only nine points. Also, there is
significant scatter in the data, as can be seen in Exhibit 9.
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Exhibit 9: Simple Weight-Based Cost Model.

While the trend is reasonable, the significant scatter in the data results in a rather poor R? of 0.4389.
The danger at this point, as we have learned, is that we could use a bad modelling practice such as
overfitting the data or using a subjective parameter. But what if we found a second objective parameter



that provided substantial predictive power? Exhibit 10 shows the impact of adding a date parameter to
the model, in this case an indicator variable identifying data points developed before and after 1970.
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Exhibit 10: Weight and Date Cost Model.

Adding the indicator variable significantly improves the quality of the CER (a more complete listing of
the pertinent statistics for both CERs is given in Appendix B). But the question needs to be asked: why
19707? Space systems developed prior to 1970 were pushing the art in terms of manufacturing
capability, technology, and were often schedule driven. After 1970 advancing computer technology
enabled better design processes, with fewer test articles and systems tests. In general the technology
was better understood, schedule pressures were reduced, and the many failures of the early Space Age
created a large knowledge base of what did and did not work. Thus by both statistics and logic, the CER
shown in Exhibit 10 is far superior to the CER in Exhibit 9.

Exhibit 11 compares some early estimates for a new space system similar to those in our model. If we
are using our model to validate these early estimates, which are a mixture of parametric and
engineering build-up, we would probably say they are conservative, since they are all above the post-
1970 trend line.
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Exhibit 11: Comparison of Model to Early Estimates.

Exhibit 12 shows the same plot with more recent cost estimates. These more recent estimates are
approaching the pre-1970 trend line. Obviously, the project did not get the message that anything
developed after 1970 should not cost this much. So what went wrong, why did this model, which was
built on objective information, which is not over-subscribed, which has no biases, fail?
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Exhibit 12: Comparison of Model to Recent Estimates.

Take a look at Exhibit 13. In Exhibit 13 | have numbered the historical data points and identified one or
more pertinent characteristics about each one. Note that six of the nine data points are first of a kind
systems but that the three lowest cost data points (5, 6, & 7) contain significant heritage from data point
1. Data points 5, 6, 7, and 8 were developed to interface with a pre-existing system, simplifying
development. Data point 9 is significantly less complex than the other eight. In terms of size and



function, data points 3 and 4 are the closest analogs to the new system we are developing. Therefore,
we should not be surprised that the cost appears to be gravitating towards these analogs.
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Exhibit 13: A Different View of the Model Data.

What is striking about Exhibit 13 is that is illustrates a story about the data that is much more complex
and nuanced than the two variable model. In other words, each data point has a story to tell. And when
we develop parametric models we either ignore these stories because it is difficult to synthesize them
into a single number or we oversimplify them to create a representative value for modeling.

So what is a responsible cost estimator supposed to do? If she tries to address the uniqueness of the
data, she risks over-specifying the model or creating unsupportable subjective parameters. If she sticks
with simple objective parameters, she may still fall victim to biases, and the model may yield
unsatisfactory results. The solution to this problem lies not in our approach to modeling, but in our
approach to how we use our models, and how we use our data.

Parametric Cost Estimating and Data

Parametric cost estimators are defined by their models, but in reality it is our data that separates us
from other approaches to cost estimating (one could argue, quite successfully | believe, that all cost
estimating is data driven, but that is a topic for another paper). A model is simply a representation of
reality, and in our particular situation, given the amount of random noise in our data, a rather pale
representation at that. Therefore, to be an accomplished parametric cost estimator, you must know
and understand the historical data that is the basis for your model(s) and that is most relevant to the
system you are costing. You cannot separate parametric cost estimating from a knowledge and
understanding of the data!

Parametric cost models are valuable and useful tools, but they must be used intelligently. The power of
a parametric cost model comes not from its statistical prowess, but from its ability to enable to analyst
to extrapolate from the known to the unknown. This is why the connection between the data and the
model is so important. Using a model free of the data can give you a reasonable answer, but if the



model is the only basis for your estimate then you may be on thin ice. Relevant data should be the
starting point for your cost estimate and it should also form the foundation for validating your estimate.
A good parametric model used in conjunction with relevant data makes for an estimate that is credible,
supportable, and defendable.

Making a Better Cost Model

When you are working with data of opportunity, creating a parametric cost model is hard. NASA data is
full of random noise, noise that comes from how the data was collected and analyzed, but more
importantly, noise from all of the random events that happen during a system’s development. Often the
parametric cost modeler is faced with a choice: engage in R? boosting practices such as cherry picking
the data or overfitting the model; use subjective parameters to explain the noise; or embrace the
messiness, the noise, the randomness. My recommendation is that you embrace the mess.

Embracing the mess means that you accept that there are limitations as to how far our models can go in
explaining the underlying data as well as the cost of future systems. It also means that you are going to
rely on the story behind the data to explain the variation in the data and support your cost estimate.
You are going to honor what the data is telling you, not try to ignore it or oversimplify it or explain it
away. When you embrace the mess you will let the data guide your model and your estimate. The data
will tell you if your cost should be higher or lower. The data will provide the foundation.

To make a better model you must learn to question everything. We are good at questioning non-
intuitive results, but we must learn to question our intuitive results as well. A correct intuitive result
may be right for the wrong reason. An excellent example is the New Design parameter we investigated
earlier. The percent new design values of 5%, 15%, 25%, etc. gave intuitive results when used in the
regression analysis. But as | showed in Exhibit 7, it was not the new design values but rather the
stratification of the data (and the imposition of an arbitrary structure on the randomness) that led to
these results.

The flip side of not questioning intuitive results is the attempt to make non-intuitive results intuitive.
Here is how it works. You are developing a new hardware CER. The technical people tell you that
parameter X is the most important parameter for determining the cost. You regress cost against
parameter X and you get lousy results. The typical human response is to try and find some causative
factor (bad data, outliers, etc.) to explain the non-intuitive outcome. But it could also be true that the
technical experts are doing their own storytelling, that they have developed their own mythology based
on representativeness to explain what drives cost. It is also possible that parameter X is an important
input into how the technical expert does their job, but not to the overall cost of the system (Kahneman’s
WYSIATI).

Another idea for making better models is to have the process and the results reviewed by an
independent, non-advocate team. Getting an independent review can raise questions you did not think
about and can force you to defend your choices. In the process of explaining your rationale to an
independent party problems in logic or approach may be discovered. Anindependent reviewer may
also suggest an alternative approach, explanation, or technique that you did not consider. And don’t
limit your review to the process and results, have someone check the math. Mathematical mistakes
that don’t create non-intuitive results may not be caught, invalidating an outcome.



A final suggestion for improving our models is to have a different team (or analyst) take the data and
develop their own model. If the independent analysts reach similar conclusions regarding input
variables, transformations, and minimization techniques; then that can validate your model. Even if the
independent team reaches different conclusions that does not necessary invalidate your work, but it will
require that you re-examine your process and approach to ensure that you have not biased the
outcome, overlooked an alternative explanation for the behavior of the data, or made a mistake.

| realize that resources (both time and people) may make the independent development team approach
difficult, if not impossible, to implement. However, at NASA Marshall Space Flight Center (MSFC) we are
making the data we use to develop our CERs for the Project Cost Estimating Capability (PCEC) available
to the entire NASA cost community. We are hoping that other cost analysts will take the data and
perform their own model developments. | realize that within the larger parametric cost community
there are different schools of thought concerning equation forms, minimization criteria, etc. If two
different groups approach their analysis of a data set from very different mindsets, it could lead to an
interesting comparative analysis where we all learn something unexpected, and possibly useful.

Improving Model Accuracy

We have become quite adept at creating parametric models that reproduce the underlying data with a
reasonable level of accuracy. But is that a real measure of the quality of the model? After all, the
purpose of our models is to help us estimate the cost for something that has never been built. What if
we measured the quality of our cost models by how well they estimate the cost for these new systems?

In the space business development cycles are often long, on the order of 4 to 8 or more years. The
number of system changes made between the initial estimates and what it actually built also make it
difficult to get useful feedback on how well a model performs. Still, the best way to determine model
performance is to use it to make a prediction and then see how well that prediction turns out.
Benchmarking past estimates to actuals should be standard operating procedure for all cost
organizations, both as a way to evaluate the model(s) and (perhaps more importantly) as a way to
evaluate the organization’s estimating process.

Another approach to improving model accuracy is to use one or more resampling techniques, such as
bootstrapping, cross-validating, or jackknifing. Bootstrap resampling involves drawing a random sample
from your data set, with replacement, that is the same size as your model data set. In other words, if
your model is based on N data points, you will draw a sample of size N from your model data, replacing
(or returning) the drawn data point each time. By using Monte Carlo simulation to run thousands of
trials, you can use bootstrapping to estimating the confidence interval on your model coefficients as
well as a prediction interval for your estimates.

Jackknifing involves recalculating the model coefficients N-1 times (N being the size of you data set),
each time leaving out a different data point. Using the Jackknife technique you can calculate a mean
and standard deviation for your model coefficients as well as the amount of bias in your baseline model.
The Jackknife technique is sometimes preferred over bootstrapping due to its ease of calculation and
repeatable results.

Cross-validation is a technique particularly well suited for assessing how well a cost model will perform
in the real world. In cross-validation you divide your data set into a training (or known) data set and a



validation (or unknown) data set. Typically this is done multiple times, each time using different data
points for the training and validation data sets. There are various methods for selecting the size and
composition of the training and validation sets (Wikipedia lists several). Since the purpose of cross-
validation is to measure model performance, you can calculate statistics such as the mean squared error
or the mean absolute deviation to determine estimating error.

A third approach to improving model accuracy is to benchmark a model against new data. Obviously,
the new data should be of the same type used to develop your model (i.e. using a spacecraft data to
benchmark a spacecraft cost model). The technique is simple. Take the cost for a recently completed
system, normalize the cost as necessary so that it is consistent with your model output, develop an
estimate for the system using your model, and compare the results to the actuals. The advantage of this
approach is that you get unbiased feedback on how your model performed. If the costs are reasonably
close (I will leave it up to you to define “reasonable”) then your model is doing good, if the costs are not
close, then your model may be lacking in some way.

Two things to consider when benchmarking against new data. While a poor result indicates your model
accuracy may be low, a good result is not proof that your model is accurate. In other words, good
results do not guarantee continued good results. The other problem with benchmarking is that unless
your model estimates something that produces large numbers of actuals, you will not have sufficient
data to develop a statistical estimation of model performance. This is a real problem at NASA, where
even in a good year we may only launch 5 or 6 science missions and decades can elapse between the
development of human spaceflight systems.

Final Thoughts and Conclusions

Building a parametric cost model is hard work. The data is noisy and often does not behave like we
want it to. We need statistics to give us an indication of the goodness of our models, but; statistics can
be manipulated and mislead. On top of all of that, our own very human biases can lead us astray;
causing us to see patterns in the noise and draw false conclusions from the data.

Yet, it is the data itself that is the foundation for making better cost estimates and cost models. | believe
the mistake we often make is we believe that our models are representative of the data; that our
models summarize the experiences, the knowledge, and the stories contained in the data. However, it is
the opposite that is true. Our models are but imitations of reality. They give us trends, but not truth.
The experiences, the knowledge, and the stories that we need in order to make good cost estimates is
bound up in the data. You cannot separate good cost estimating from a knowledge of the historical
data.

One final thought. It is our attempts to make sense out of the randomness that leads us astray. In order
to make progress as cost modelers and cost estimators, we must accept that there are real limitations
on our ability to model the past and predict the future. | do not believe we should throw up our hands
and say this is the best we can do. Rather, to see real improvement we must first recognize these
limitations, avoid the easy but misleading solutions, and seek to find ways to better model the world we
live in. I don’t have any simple solutions. Perhaps the answers lie in better data or in a totally different
approach to simulating how the world works. All | know is that we must do our best to speak truth to
ourselves and our customers. Misleading ourselves and our customers will, in the end, result in an
inability to have a positive impact on those we serve.
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Appendix A

Detailed Statistics for Exhibit 5.

Regression Statistics

Multiple R 0.9615
R Square 0.9245
Adjusted R Square 0.9220
Standard Error 0.4658
Observations 65
ANOVA

df SS MS F Significance F
Regression 2 164.6983 82.3492 379.4792 0.0000
Residual 62 13.4544 0.2170
Total 64 178.1527

Coefficients Standard Error t Stat P-value

Intercept -0.7020 0.2427  -2.8928 0.0053
In(weight) 0.7783 0.0510 15.2471 0.0000
In(newdesign) 1.3560 0.0747 18.1579 0.0000




Appendix B

Detailed Statistics for Exhibit 7.

Regression Statistics

Multiple R 0.9640
R Square 0.9294
Adjusted R Square 0.9271
Standard Error 0.4505
Observations 65
ANOVA

df SS MS F Significance F
Regression 2 165.5706 82.7853 407.9359 0.0000
Residual 62 12.5821 0.2029
Total 64 178.1527

Coefficients Standard Error t Stat P-value

Intercept -4.7301 0.2263 -20.9025 0.0000
In(weight) 0.7784 0.0493 15.7774 0.0000
In(newdesign) 2.0452 0.1083 18.8909 0.0000




