GRADIENT FIELD IMPLODING LINER FUSION PROPULSION SYSTEM

Michael LaPointe^(a), Robert Adams^(a), Jason Cassibry^(b), Ross Cortez^(b), James Gilland^(c) ^(a)Marshall Space Flight Center; ^(b)University of Alabama, Huntsville; ^(c)Ohio Aerospace Institute

Issues for space propulsion:

- Repetitively pulsed high current coil, high power switches, thermal losses
- Accurate target placement, timing

Innovation:

 Replace the rapidly pulsed coil and stationary target with a fast moving target fired into a static, high gradient magnetic field (superconducting coil)

Concept Challenges:

- Target acceleration (several km/s)
- Magnetic field design (fields required to compress, burn, expand and detach)
- Target design and compression physics
- Mission analysis and SOA comparison

Sequence during each pulse:

- a) Target acceleration into gradient field at high axial velocity
- b) Induced liner currents compress target to initiate fusion
- c) High B-field maintains compression as target moves through coil
- d) Plasma expansion and detachment in magnetic nozzle region

