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Additive Construction

• 3-dimensional (3D) printing (additive manufacturing) 
on a large (structure) scale

• Different geometries can be printed from a computer 
aided design model

• “Slicing” software produces code that allows layer-
by-layer printing

• Permits construction of multiple types of buildings by 
one machine

• Currently being investigated by NASA and the United 
States Army Corps of Engineers



Additive Construction

• Use in-situ resources as construction 
materials, reducing material launched 
from Earth by over 90%

• Not limited to water-based binders 
such as Ordinary Portland Cement 
(OPC) and Sorel (MgO-based) 
cement - sulfur, gypsum, ceramics, 
and polymers can be used

• Autonomously build multiple types of 
structures

• Increase technology readiness level 
(TRL) of additive construction 
technology in preparation for deep 
space missions

• Reduce imported material from 5 
tons to less than 2.5 tons

• Source concrete locally (in-situ 
resource)

• Reduce construction time from 5 
days to 1

• Reduce construction personnel 
from 8 to 3 per structure

• Reduce construction waste from 1 
ton to less than 500 pounds

• Build the structure to look like local 
housing using digital models; 
adaptable design that can serve the 
local community when troops leave

Additive Construction 
with Mobile 
Emplacement (ACME)

Additive Construction 
of Expeditionary 
Structures (ACES)



Additive Construction with
Mobile Emplacement (ACME)

• Utilizing Contour Crafting 
technology (invented by Dr. Behrokh
Khoshnevis, Contour Crafting 
Corporation)

• Currently investigating OPC and 
Sorel cements (water-based 
mixtures) to co-develop printing 
technology with USACE

• OPC and Sorel cements can be 
produced on the surface of Mars

• Sorel can be produced on the Moon
• Independently examining polymer 

concretes and sodium silicate for 
planetary construction materials,
plan to study other binders in the 
near future

Upper image: Dome printed at MSFC using contour crafting technology, 
height ~1 meter.  Lower image: Interior of dome during printing.



Fabrication of Samples

• Three samples were cast into 15.24cm x 15.24cm x 
2.54cm molds

Martian simulant 
JSC Mars-1A, 
stucco mix, OPC, 
and water

Martian simulant JSC Mars-1A, Sorel 
(MgO-based) cement, boric acid (set 
retardant*) and water – sample fractured 
during shipping to JSC prior to testing

Lunar simulant 
JSC-1A, stucco 
mix, OPC, and 
water

*Set retardant used because Sorel sets up very quickly and would solidify within the ACME system prior to extrusion



Simulants Used

• JSC Mars-1A (martian simulant)
• Basalt palagonitic tephra 

(weathered ash)
• Appears red due to weathering

• Vesicular grains
• Not crushed or milled
• Grain size ≤5mm
• Density 0.8g/cm3

• JSC-1A (lunar simulant)
• Crushed basalt
• Grain size ≤1mm
• Density 2.875g/cm3



Fabrication of Samples – ACME-1

Martian simulant JSC Mars-1A, stucco mix, OPC, 
Navitas 33 (rheology control), and water

25.40cm tall, 76.20cm long, 5.72cm thick wall

2 vertical layers and 2 horizontal layers printed per 
day; material was allowed to dry between prints



Fabrication of Samples – ACME-1

Video by Diane Risdon






Fabrication of Samples 

Martian simulant JSC Mars-1A, stucco mix, OPC, 
Navitas 33 (rheology control) and water

Sample delaminated during 
shipping to JSC on a boundary 

between prints made on 
different days



Planetary Materials Requirements

• Must be produced in-situ, with regolith (soil) as a 
component (aggregate and/or binder source)

• This is a site-specific requirement; must account for spatial 
variation in the geology

• Must adhere to previously printed layers (or a binding 
agent must be used) for structural integrity

• Must withstand micrometeorite impact
• Must withstand temperature variations
• Must hold pressure (either by a compressive regolith 

load, lining, or design)
• May provide radiation shielding
• Minimizing water and energy consumed in the 

fabrication process is also a consideration



Hypervelocity Impact Testing

• Hypervelocity impact tests were internally funded and 
performed at the White Sands Test Facility in Las 
Cruces, NM

• 2.0mm Al 2017-T4 (density 2.796g/cm3) impactor, 0.17-
caliber light gas gun, 0° impact angle, 1Torr N2 in 
chamber during test

• 7.0±0.2km/s velocity (approximate mean expected 
velocity of micrometeorites at the surface of Mars, and 
higher than expected velocity for bullets on Earth)

• Kinetic energy is equivalent to a micrometeorite with a 
density of 1g/cm3 and a diameter of 0.1mm traveling at 
a velocity of 10.36km/s, as well as a 9x17mm Browning 
Short bullet.



Hypervelocity Impact Testing

• Sample 1: JSC Mars-1A, stucco mix, OPC, and water

Area: 29.80mm x 27.10mm
Depth: 10.30mm



Hypervelocity Impact Testing

• Sample 2: JSC Mars-1A, stucco mix, OPC, Navitas 33, and water

Area: 22.45mm x 32.78mm
Depth: 8.33mm
~2.48cm3 material ejected (determined by density calculation)



Hypervelocity Impact Testing

• Sample 3: JSC Mars-1A, Sorel cement, boric acid, and water

Front Crater Area: 41.26mm x 41.34mm
Depth: 10.12mm
~4.13cm3 material ejected
(determined by density calculation)

Spall Area: 64.99mm x 52.04mm
Depth: 9.96mm

~13.22cm3 material ejected
(determined by density calculation)



Hypervelocity Impact Testing

• Sample 4: JSC-1A, stucco mix, OPC, and water

CAD crater geometry images by John Ivester

Area: 25.60mm x 25.85mm
Depth: 6.48mm

0.98cm3 material ejected 
(determined by SLS)



Discussion of Results

• Lunar simulant-bearing Sample 4 is 
more resistant to impact damage than 
martian simulant-bearing Samples 1 and 
2, which are more resistant to impact 
damage than the martian simulant-
bearing Sorel cement Sample 3.

Sample 4 Sample 2Sample 1

Sample 3



Discussion of Results

• Sample 4 contains lunar simulant; the remaining 
samples contain martian simulant

• Lunar simulant is more dense than martian simulant
• 2.875g/cm3 vs. 0.8g/cm3

• Lunar simulant is finer-grained than martian simulant
• ≤1mm vs. ≤5mm

• Lunar simulant does not contain vesicles
• JSC-1A is crushed basalt; JSC Mars-1A was not crushed or 

milled

• Thus, grains that are crushed, smaller, and more 
dense should be used in planetary construction 
materials



Discussion of Results

• Sample 3 (Sorel cement) received more damage 
than OPC-bearing Samples (1, 2, and 4)

• Testing at MSFC indicates Sorel cement formulations 
with boric acid (set retardant) and JSC Mars-1A simulant 
have compression strength of ~3000psi or less, lower 
than OPC formulations (~3000-5200psi) after 7 days.

• Loss of strength compared to other Sorel cement 
formulations (with compression strengths up to 
8000psi) likely due to the JSC Mars-1A aggregate and/or 
the addition of boric acid.

• More experimentation is needed to identify the 
source of lost strength



Discussion of Results

• Delamination of layers in Sample 2 occurred during 
shipping and testing

• Delamination occurred between layers printed on 
different days, where wet cement bonded to dry 
cement

• Wet-dry layer adhesion not as strong as wet-wet layer 
adhesion

• Impact did not cause delamination of layers printed on 
the same day

• To minimize delamination during impact, samples 
should be completely printed when layer adhesion 
properties are maximized (i.e., on the same day)



Discussion of Results

• Additively constructed 
Sample 2 was not perforated 
during impact and did not 
spall

• Results are directly 
applicable to both NASA and 
USACE programs; additively 
constructed structures can 
withstand micrometeorite 
and ballistic impact 
(provided layer adhesion is 
maximized)



Conclusions

• Aggregate size and density influence material 
response to hypervelocity impact

• The Sorel mixture, in its current formulation, would 
not work as a planetary construction material

• Infrastructure elements that are additively 
constructed should be built to maximize layer 
adhesion during printing

• Structures that are additively constructed can 
withstand micrometeorite and ballistic impact (with 
maximum layer adhesion)



Future Work

• Investigate new binders (cements), including sodium 
silicate, polymers, ceramics, and others

• Create a test plan for emplacement on planetary 
surfaces (in a vacuum or pressurized volume)

• Study the aging of material due to thermal cycles, 
multiple impacts, and radiation

• Adapt to the geology of the site selected for human 
landing in order to create in-situ binders

• Increase the Technology Readiness Level of additive 
construction technology, as well as resource extraction 
and processing technology
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9x17mm Browning Short Bullet

Image from: http://xgmbullets.blogspot.com/2013/10/380-acp-9x17mm.html



Sulfur Concrete

• Sulfur concrete was investigated at MSFC in ~2005
• Included lunar simulant (JSC-1A, ≤1mm grain size)
• Sulfur concrete does not require water (a precious 

resource on planetary surfaces)

• Cube size 5.08cm x 5.08cm x 
5.08cm

• 1mm aluminum sphere
• 6km/s
• Presented in Bodiford et al. (2006) 

Proceedings of the 10th ASCE Earth 
and Space Conference



ACME-2 System

Gantry Mobility 
System

Mixer

Pump

Accumulator 
(allows pump to 
stay on when 
nozzle closes for 
doors/windows) Hose Nozzle
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