AUTOMATED SENSITIVITY ANALYSIS OF INTERPLANETARY TRAJECTORIES

JEREMY KNITTEL*

KYLE HUGHES*

JACOB ENGLANDER*

BRUNO SARLI^

INTERNATIONAL SYMPOSIUM ON SPACE FLIGHT DYNAMICS JUNE 8TH, 2017

Motivation

- Methodology
- Global Optimization
- Case Study 1
- Case Study 2
- Summary

MOTIVATION

- First task for mission designer is typically to create a nominal/baseline trajectory
- Second task is often to perform sensitivity analysis. The objective is to quantify the effects of changes to:
 - Operational constraints
 - Sub-system requirements
 - Off-nominal spacecraft performance
- Mission design is human-labor intensive and therefore expensive
- Computation time is not and is therefore cheap
- Goals:
 - Transfer as much work-load as possible to computers (automation!)
 - Quantify entire design space
 - Find better mission design solutions than possible otherwise

Motivation

Methodology

- Global Optimization
- Case Study 1
- Case Study 2
- Summary

METHODOLOGY

METHODOLOGY

- Motivation
- Methodology
- Global Optimization
- Case Study 1
- Case Study 2
- Summary

GLOBAL OPTIMIZATION

- If trajectory solver has no global optimization capability (local only), then re-seeding with improved initial guesses is crucial
- If trajectory solver DOES have global optimization capability, improved re-seeding is still helpful
- EMTG uses monotonic basin-hopping for global optimization
 - This process is stochastic.
 - No deterministic way to know if a global optimum has been reached -----> trendlines can help
 - No deterministic way to determine necessary run-time -----> frequent iterations can eliminated wasted runtime after optimal solution has been found
 - Currently, EMTG hoppers are serial only -----> re-seeding effectively creates parallel hoppers
- Global optimality also includes modify options that cant be modified in a fixed local optimization
 - Between iterations, PEATSA can modify these fixed parameters
 - Flyby sequence
 - Target small-body

GLOBAL OPTIMIZATION

NASA Goddana SPACE FLIGHT CENTER

- Motivation
- Methodology
- Global Optimization
- Case Study 1
- Case Study 2
- Summary

CASE STUDY I – URANUS MISSION LAUNCH WINDOW

- Goal: Uranus moon tour
- Assume that designer has zero knowledge of useful flyby sequence
- Launch sometime in late 2024 or early 2025
- Required 8 minutes of human labor for setup, and 12 wall clock-hours of computation time on a 64 core server

Mission Parameters	
Propulsion model	impulsive
Maximum flight time	12 years
Maximum numbers of DSMs	1 per flyby
Launch Vehicle	Atlas V 551
Spacecraft Isp	220 seconds
Intercept velocity	< 7 km/s
EMTG objective	maximum mass
EMTG run-time per iteration	60 seconds
PEATSA Options	
run_type	launch window
sorting_criteria	launch date
comparison_criteria	maximum final mass
wait_for_guess	yes
modify_flybys	yes
maximum_flybys	5
flyby_bodies	Venus, Earth, Mars, Jupiter,
	Saturn
options_to_vary	launch date
option_ranges	July 2024 through June
	2025

June

Iteration 0

SPACE FLIGHT CENTE

Iteration 80

- Motivation
- Methodology
- Global Optimization
- Case Study 1
- Case Study 2
- Summary

CASE STUDY 2 – LOW-THRUST ASTEROID SAMPLE RETURN

- Goal: quantify design space for return of a sample from asteroid 1949TG Daphne (ecc > .2, inclination > 10 deg)
- Launch sometime in late 2024 or early 2025
- Required 12 minutes of human labor for setup and 32 wall clock-minutes of computation time on a 64 core server

Mission Parameters	<u> </u>
Drepulsion model	naly many all thrust mass
Propulsion model	porynomiai thrust, mass
	flow rate vs. power
	available
Propulsion system	2 NEXT engines ⁷⁾
Maximum flight time	10 years
Earth return velocity	< 10 km/s
Duty cycle	90%
Propellant margin	10%
Power margin	15%
Buspower	1 kW
Stay time	> 500 days
EMTG run-time per iteration	20 seconds
Low-thrust transcription	Finite Burn ⁸⁾
PEATSA Options	
run_type	trade study
comparison_criteria	maximum final mass
wait_for_guess	yes
flyby_bodies	none
options_to_vary	launch vehicle; solar ar-
	ray size; electric propellant
	load
option_ranges	Atlas V - 401 (0), 411 (1),
	421 (2), 431 (3), 541 (9) or
	551(10); 20 to 40 kW; 900
	to 1500 kg
trade_study_type	vary each option separately

 Electric Propellant Tank Sizing

SPACE FLIGHT CENTER

MISSED-THRUST

Goddana SPACE FLIGHT CENTER

- Motivation
- Methodology
- Global Optimization
- Case Study 1
- Case Study 2
- Summary

SUMMARY

- Sensitivity analysis is no longer a task that requires significant hands-on time for mission designer
- PEATSA allows simplified viewing of trade study effects, missed maneuver planning, etc.
- Overall computation time decreases greatly, because individual runtime decreases
- PEATSA increases global optimization capability

