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MOTIVATION

= First task for mission designer is typically to create a nominal/baseline trajectory

m  Second task is often to perform sensitivity analysis. The objective is to quantify the effects of changes
to:

= Operational constraints
= Sub-system requirements
= Off-nominal spacecraft performance
= Mission design is human-labor intensive and therefore expensive
=  Computation time is not and is therefore cheap
= Goals:
= Transfer as much work-load as possible to computers (automation!)
= Quantify entire design space

=  Find better mission design solutions than possible otherwise
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METHODOLOGY

Perturbed Mission

EMTG

Design Space

Perturbed Mission
Design

PEATSA

SNOPT

Perturbed Mission
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Design Space

Math Problem

PEATSA

EMTG = Evolutionary Mission Trajectory
Generator
SNOPT = Stanford Numerical OPTimizer

PEATSA = Python EMTG Automated Trade
Study Application

PEATSA

Perturbed Mission
Design




METHODOLOGY

Parse PEATSA options

Create EMTG cases 2

Run EMTG cases

Parse EMTG results

Has the case met stopping criteria?

This case is done! . l R Find an improved initial
: Yes No guess from the results

SPACE FLIGHT CENTER




AGENDA

= Motivation

= Methodology

= Global Optimization
m Case Study 1

m Case Study 2

= Summary

SPACE FLIGHT CENTER




GLOBAL OPTIMIZATION

= |f trajectory solver has no global optimization capability (local only), then re-seeding with improved initial guesses is
crucial

= |f trajectory solver DOES have global optimization capability, improved re-seeding is still helpful
= EMTG uses monotonic basin-hopping for global optimization
= This process is stochastic.
= No deterministic way to know if a global optimum has been reached ------ > trendlines can help

= No deterministic way to determine necessary run-time ------- > frequent iterations can eliminated wasted run-
time after optimal solution has been found

= Currently, EMTG hoppers are serial only ------ > re-seeding effectively creates parallel hoppers
= Global optimality also includes modify options that cant be modified in a fixed local optimization
= Between iterations, PEATSA can modify these fixed parameters
= Flyby sequence

m Target small-body
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GLOBAL OPTIMIZATION

Parse PEATSA options

Create EMTG cases

B
>

A
»
»

Run EMTG cases

Parse EMTG results

Has the case met stopping criteria?

This case is done! . ! R Find an improved initial
: Yes No guess from the results

Randomly modify trajectory

q rd Ao A parameters (i.e. gravity assist
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CASE STUDY | — URANUS MISSION LAUNCH WINDOW

Mission Parameters

Propulsion model impulsive
Maximum flight time 12 years
Maximum numbers of DSMs 1 per flyby
Launch Vehicle AtlasV 551
Spacecraft Isp 220 seconds

=  Goal: Uranus moon tour Intercept velocity < 7km/s
EMTG objective maximum mass

=  Assume that designer has zero knowledge of useful flyby EMTG run-time per iteration 60 seconds

seguence PEAT SA Options

run_type launch window

= [aunch sometime in late 2024 or early 2025 sorting_criteria launch date

: . comparison_criteria maximum final mass
= Required 8 minutes of human labor for setup, and 12 wall wait_for_guess yes
clock-hours of computation time on a 64 core server modi fy_flybys yes
maximum.flybys 5
flyby_bodies Venus, Earth, Mars, Jupiter,
Saturn
options_to_vary launch date
option_ranges July 2024 through June
2025
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CASE STUDY | — URANUS MISSION
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CASE STUDY | — URANUS MISSION
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CASE STUDY | — URANUS MISSION
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CASE STUDY | — URANUS MISSION
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CASE STUDY 2 — LOW-THRUST ASTEROID SAMPLE RETURN

= Goal: quantify design space for return of a sample from
asteroid 1949TG Daphne (ecc > .2, inclination > 10 deg)

= Launch sometime in late 2024 or early 2025

= Required 12 minutes of human labor for setup and 32
wall clock-minutes of computation time on a 64 core
server
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Mission Parameters
Propulsion model

Propulsion system
Maximum flight time
Earth return velocity
Duty cycle

Propellant margin
Power margin

Bus power

Stay time

EMTG run-time per iteration
Low-thrust transcription
PEAT SA Options
run_type
comparison_criteria
wait._for _guess
flyby_bodies
options_to_vary

option_ranges

trade_study_type

polynomial thrust, mass
flow rate vs. power
available

2 NEXT engines”

10 years

< 10 km/s

90%

10%

15%

1kw

> 500 days

20 seconds

Finite Burn®

trade study

maximum final mass

yes

none

launch vehicle; solar ar-
ray size; electric propellant
load

Atlas V - 401 (0), 411 (2),
421 (2), 431 (3), 541 (9) or
551(10); 20 to 40 kw; 900
to 1500 kg

vary each option separately




CASE STUDY | — URANUS MISSION
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CASE STUDY | — URANUS MISSION
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CASE STUDY | — URANUS MISSION
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SUMMARY

= Sensitivity analysis is no longer a task that requires significant hands-on time for mission designer
= PEATSA allows simplified viewing of trade study effects, missed maneuver planning, etc.
=  Qverall computation time decreases greatly, because individual runtime decreases

= PEATSA increases global optimization capability
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