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Constellation Program

• NASA formed the Constellation Program in 

2005 to achieve the objectives of maintaining 

American presence in low-Earth orbit, returning 

to the moon for purposes of establishing an 

outpost, and laying the foundation to explore 

Mars and beyond in the first half of the 21st

century

• The Exploration Technology Development 

Program (ETDP) was formulated to address 

the technology needs to address Constellation 

architecture decisions

• The Propellants and Cryogenic Advanced 

Development (PCAD) project was tasked with 

risk mitigation of specific propulsion related 

technologies to support ETDP
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Propellants and Advanced Cryogenics 

Development (PCAD)
• Propulsion systems were identified as critical technologies owing to 

the high “gear-ratio” of lunar & Mars landers

– Cryogenic propellants offer performance advantage over storables

(NTO/MMH)

• Mass savings translate to greater payload capacity

– In-situ production of propellant an attractive feature; methane and oxygen 

identified as possible Martian in-situ propellants

• New technologies were required to meet more difficult missions 

– High performance LOX/LH2 deep throttle descent engines

– High performance LOX/LCH4 ascent main and reaction control system 

(RCS) engines

• The PCAD project sought to provide those technologies through

– Reliable ignition & pulse RCS

– Fast start

– High efficiency engines

– Stable deep throttling
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Methane Ignition Risk Reduction

• Methane was historically seen as difficult 

to ignite compared to other cryogens

– It has a longer ignition delay and higher 

ignition energy requirement as compared to 

other cryogenic fuels traditionally used in 

propulsion (e.g. hydrogen)

• Methane ignition was seen as a primary 

risk reduction area

– Identify minimum ignition energy required

– Identify life-limiting phenomena in igniter

– Demonstrate reliable ignition over range of 

conditions and pulse cycles

• PCAD accomplished several goals with 

ignition risk reduction

– 30,000+ pulses of methane spark igniter

– Ignition studies with multiple igniter types

– Ignition margin in RCE tests

– RCE ignition over range of propellant 

temperatures
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Ascent Main Engine class igniter 

during vacuum test at GRC

WASK spark-torch igniter during 

pulse durability testing at GRC

Unison compact-style 

igniter developed for 

AME and RCE enginesAugmented Spark 

Impinging (ASI) Igniter 

developed by MSFC

Microwave Igniter 

tested at MSFC

100-lb Aerojet RCE with Unison 

compact exciter installed at GRC
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Reaction Control Engine Development

• Focused on 100-1000-lbf class engines

• Top 3 risks areas were

– Reliable ignition

– Vacuum performance 

– Repeatable pulse width 

• For 100-lb RCE, goals were

– MIB of 4 lbf-s

– Vacuum Isp of >317 s

– 80 ms electric pulse widths (EPW)

– 25,000 valve cycles

– Operation over range of temperature inlet 

conditions 

(160 °R LOX/170 °R CH4 to 224 °R LOX 

& CH4)

• Two 100-lb engine concepts were 

developed and tested
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100-lbf Northrop 

Grumman 

LOX/LCH4 RCE

Aerojet LOX/LCH4 RCE testing at GRC

870-lbf Aerojet 

LOX/LCH4 RCE

Tests at WSTF
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Ascent & Descent Engine Development

• Three key risk identified for 

Methane Ascent Engines

– Reliable ignition

– Fast start (90% thrust in 0.5 s)

– Performance (Vac. Isp > 355 s)

• Analysis efforts to compare sea-

level test data to altitude 

conditions

• Engine tests were aimed at 

achieving 355 s Vac. Isp

– AME (5500-lbf) tests were within 

2% of Isp target

• Descent engine testing focused 

on 10:1 throttle with LOX/LH2
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5500-lbf Aerojet 

LOX/LCH4 AME 

testing at WSTF

Armadillo Aerospace dual-

bell nozzle test at WSTF

MSFC designed Swirl-

Coaxial Injector

ATK/XCOR workhorse 

engine test at XCOR 

KTE engine test at MSFC 

PWR CECE 

Descent Engine 

altitude tests at 

PWR

Northrop Grumman 

Pintle Injector 

during water tests
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Integrated Propulsion System Testbed 

(IPSTB)

• Auxiliary Propulsion Systems Test Bed 

(APSTB) was precursor to IPSTB

– APSTB was used to support PCAD RS-18, AME, 

RCE testing at WSTF-TS401

– Modified to support concurrent testing of RS-18, 

AME and RCE thrusters

– Originally designed for the Space Shuttle systems 

development, the rig was significantly oversized for 

PCAD needs

• IPSTB was designed to study, characterize, 

and model the integrated operation of 

LOX/LCH4 components in an end to end 

propulsion system

– Designed with smaller propellant tanks and with the 

flexibility to change component locations or vary 

feedline lengths
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APSTB shown with RCE thruster bell 

jar and RS-18 mounted.

IPSTB Structural Overview

APSTB being installed into WSTF-TS401
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Summary of PCAD Accomplishments

• PCAD successfully provided risk reduction activities with 

respect to LOX/LCH4 engine technology

– Demonstrated reliable ignition of LOX/LCH4 over a range of 

propellant conditions

– Demonstrated 30,000+ ignition pulses of methane igniter hardware

– Demonstrated RCE can be developed to pre-prototype level to 

meet mission requirements

• Additionally, PCAD also demonstrated stable throttling 

down to 10:1 power for a LOX/LH2 descent scale main 

engine

• PCAD was heading towards integrated test bed modeling 

and test efforts

• An extensive set of literature is available to detail the 

numerous PCAD efforts
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Activities Since PCAD (2011+)

• Additive Manufacturing 

Demonstration (AMD) 

Engine at MSFC 

(2012 –Current)

• Morpheus Testing 

(2011-current)

– Test-bed article for 

exploring lander system 

technologies

• Tethered flights at JSC

• Free flights at KSC with 

ALHAT system

• Vacuum tests in GRC B-2
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MSFC AMD Engine/Breadboard 

System test article

Morpheus Test Article 

during free flight at KSC

Morpheus Test Article 

integrated system tests in 

GRC B-2

Morpheus Engine 

tests at SSC E-3

Cold He heat-exchanger on Morpheus
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Activities Since PCAD (2011+)
Additive Manufactured (AM) Thruster Hardware – Hot-fire Testing @ MSFC
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• Uncooled Refractory Chamber

• Inconel LCH4 cooled Chamber 

• GRCop-84 LCH4 cooled Chamber

• Inconel Swirl Coaxial Main 

Injectors 

• Inconel Impinging Gas Generator 

Injector

• META4 (Methane Engine Thrust 

Assy for 4K lbf) - swirl coaxial 

injector (LOX/CH4) + 3D printed 

GRCop-84 chamber full regen 

cooling

• Fuel (CH4) turbopump

• Vacuum testing MSFC ASI igniter 

& spark exciters at GRC

Funding:  Lander Technologies/CATALYST, LCUSP (Low Cost Upper Stage Propulsion)

Fuel Turbopump

at MSFC

ASI Igniter testing at GRC ACS

Printed GRCop-84 and printed Inconel 

Swirl Coax Injector & Chamber

META4 Chamber

META4 hot-fire testing at MSFC

Refractory Chamber

GG-Injector Water 

Flow Testing
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Future Needs and Technology Gap Assessment

• Develop a throttle-able regenerative-cooled engines

• pump-fed and/or pressure-fed engines 

• throttling (5:1 – 10:1),  360-365 sec, 30 – 100 kN range.  

• Develop 100 to 220-N RCS thrusters and integrated cryogenic feed systems

• Develop long duration reliable cryogenic refrigeration systems (several 

hundred watts at ~90 K) for ISRU. 

• Develop composite cryogenic tanks with focus on gap for spherical geometry 

• Develop high performance pressurization systems that improve storage 

density and reduce mass 

• Conduct extended duration thermal vacuum testing of integrated system 

• Fly a zero-g cryogenic liquid acquisition experiment in space

• Fly a test vehicle in space as a technology infusion mission to demonstrate 

integrated LOx/Methane propulsion systems
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Need to address gap of no in-space LOx/Methane flight experience.  

ISECG Identified Tech GAPS Needing Future Work

ISECG Looked at Future Needs

ISECG

International

Space 

Exploration

Coordination

Group
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