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• Human exploration architecture studies have identified liquid oxygen 

(LOX)/Methane (LCH4) as a strong candidate for both interplanetary 

and descent/ascent propulsion solutions

• Significant research efforts into methane propulsion have been 

conducted for over 50 years, ranging from fundamental combustion & 

mixing efforts to rocket chamber and system level demonstrations

• Over the past 15 years NASA and its partners have built upon these 

early activities that have demonstrated practical components and sub-

systems needed to field future methane space transportation elements

• These advanced development efforts have formed a foundation of 

LOX/LCH4 propulsion knowledge that has significantly reduced the 

development risks of future methane based in-space transportation

Background
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LOx/Methane Propellants Advantages and 

Disadvantages

• As a bipropellant propulsion system, LOX/LCH4 has some favorable characteristics for long 

life and reusability, which are critical to lunar and Mars missions 

– Non-toxic, non-corrosive, self-venting, and simple to purge

– No extensive decontamination process required as with toxic propellants

– High vapor pressure provides for excellent vacuum ignition characteristics

– Performance is better than current earth storable propellants for human scale spacecraft

• Provides the capability for future Mars exploration missions to use propellants that are 

produced in-situ on Mars

• Liquid Methane is thermally similar to O2 as a cryogenic propellant, 90,111 K (LO2, LCH4 

respectively) instead of the 23 K of LH2

– Allows for common components and thus providing cost savings as compared to liquid 

hydrogen (LH2) 

– Due to liquid methane having a 6x higher density than hydrogen, it can be stored in 

much smaller volumes

• Cryogenic storage aspect of these propellants needs to be addressed 

– Passive techniques using shielding and orientations to deep space 

– Refrigeration may be required to maintain both oxygen and methane in liquid forms
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Needs for Beyond Earth Orbit Human Exploration

• Some architecture studies have identified the potential for commonality 

between interplanetary and descent/ascent propulsion solutions using 

LOX/LCH4

• Meeting these functions (interplanetary, descent, and ascent propulsion) 

will require many or all of the following subsystems, components, and 

capabilities:

• Reaction Control Propulsion: ~ 100 to 880 N (25 lbf – 200 lbf) class

• Pressure fed engine:  ~ 25 KN (6000 lbf) class

• Pump fed engine system~ 100 KN (25,000 lbf) class

• Long Duration Cryogenic Fluid Management and Distribution 

• Including high performance pressurization systems

• Including thermal management with high performance Multilayer insulation and 90K 

class cryo-cooler systems integrated with CFM&D

• Including management of propellant losses due to boil-off and component leakage
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Lox/Methane Propulsion 

System Technology 

Areas

Performance needs for a Deep space 

based lander or other vehicles (service 

modules, tugs, etc)

Goals Technology Solutions

Integrated System High Reliability - several usages of the 

same vehicle, Low cost, HIgh delta-v, 

long life reusable, High mass fraction, 

quality and origin of methane

1. Reliability > 0.995

2. Life > 10 operating cycles

3. Mass Fraction > 0.85 (Prop 

dry+structure)

1. Design for re-usability

Pressurization System High density light weight storage 50% reduction in volume and mass 

over ambient temperature storage

1. Ghe cold storage with heat exchanger

2. partial autogenous systems

Pressure vessel Lightweight 1. PV/W >   [Tank 

Pressure*volume/Tank Mass]

1. Metallic (aluminum lithium)

2. Composite Overwrap

3. All Composite

Thermal Management low boiloff, thermodynamical 

management of propellants during 

launcher phase from Earth ground

1. deep space Zero boil-off (0 W/m2) 

storage at EML1

2. lunar surface surface heat leak 

0.25 Watts/m2

1. Passive

2. active

Liquid Acquistion in 

zero/low g

zero-g start, refueling capability, slosh 

damping, and anti vortex

1.  2% residuals 1. Screens channel

2. Vanes

3. Sponges

Feedsystem Redundancy management, propellant 

distribution

1. Lightweight

2. Low Pressure drop

3. low heat leak

1. Cryogenic Feedsystem for LOx/LCH4 main 

engine and RCS

Reaction Control Engines Provide Min. Impulse Bit, Thrust, and 

high cycle life

1. Min Ibit TBD

2. Thrust Range 

3. Cycle Life > TBD

Main Engines Throttle capability including idle mode, 

High Isp, High reliability, Thrust / Weight 

ratio

1. > 4:1 throttle depending on T/W

2. Isp > 355 sec

3. Thrust >30 KN

4. Helium free design

1. Pump-fed,

2. Pressure-fed Ablative

3. Pressure-fed regen

Defined Performance Needs, Goals, Solution Space
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Italy - Agenzia Spaziale Italiana (ASI)

• Tested MIRA Demonstrator, a 100-kN (10-tonne) thrust 
class, expander cycle LOx/LCH4 engine, for the a new 
upper stage of Vega, in cooperation with Roscosmos 
– Successfully tested at the complete engine level

• More than 11 tests performed up to full operating condition

• Accumulating more than 600 s of firing. 

– Development and testing of liquid methane fuel turbo-pump 
bearings

• With JAXA, ASI is investigating the methane thermal 
behavior, characterizing bearings working in liquid 
methane, and designing a regenerative thrust chamber in 
the 100-kN (10-tonne) class which is to be tested in Italy

• Designing small methane thrusters to be applied as a 
potential reaction control system of the launcher stage

• The Italian Aerospace Research Center, CIRA, is 
developing the ‘Hyprob’ research program, specifically 
dedicated to combustion phenomena studies and 
breadboard testing, up to the design of a medium scale 
– 30-kN (3-tonne thrust class) regenerative thrust chamber 

– Program developing test facilities at both laboratory level and 
thrust chamber assembly (up to 100-kN (10-tonne class) 

FIGURE 8 MIRA 
THRUST CHAMBER

FIGURE 6 SINGLE 
INJECTOR RESEARCH 
THRUST CHAMBER

FIGURE 9 MIRA ENGINE 
DEMONSTRATOR TESTED 
MAY 2014

FIGURE 7 MIRA CH4 
TURBINE MANIFOLD 
PRODUCED BY DMLS 
TECHNIQUES
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France

CNES (Centre national d’études spatiales)

• Engine tests on KVD1 Russian engine during a French – Russian 

cooperation

• Research & Development activities are being performed in parallel 

with several designs, manufacturing and testing at subsystem level 

(combustion tests and simulation capabilities including high-

frequency -HF- instability analysis, pump and inducer performances, 

for example)

• French capabilities are currently being developed for cryogenic 

propellant management

• Current main objective for CNES with French industry support is to 

prepare a LOX/LCH4 low cost, gas-generator engine demonstration 

at 1000-kN (100 t) thrust level before 2023

– 10-kN scale – bleed expander cycle 

– Capability of current LOx/LH2 engines to operate with LOX/LCH4
is also being addressed
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Germany

DLR (Deutsches Zentrum für Luft- und Raumfahrt)

• Investigated flame visualization in optically accessible chambers 

OH* and CH* visualization for sub and super-critical pressures

• Investigated injector behavior  

– Flame stabilization of coaxial and porous injectors was 

investigated

– Combustion efficiency investigations are planned

• Investigated combustion stability with a single coax injector

• Ignition of LOX/CH4 multi-injector configurations

– Chemical igniters (LOX/H2 flame)

– Laser ignition

• High-altitude ignition of LOX/GCH4

– Laser ignition of a full-scale 200-400 N RCS chamber was 

performed to determine the minimal ignition energy and 

demonstrate the feasibility of laser ignition. 

– Pre-ignition flow conditions in the chamber were visualized 

• LOX/Methane pre-burner applications 

– Film cooling and Regenerative cooling with methane
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JAXA (Japanese Aerospace Exploration Agency)

• 100-kN class LNG rocket engine, named LE-8, developed by (JAXA) and 

IHI Aerospace Co., Ltd. (IA)

– Completed more than 2000 seconds of its firing tests 

• 30 KN LNG engine for the purpose of obtaining performance data with a 

high altitude test stand (HATS)  

– Five firing tests with a total of 122 seconds at altitude conditions

• The LE-8 and the 30-kN class engines consist of an ablative chamber 

and a liquid-liquid impinging type injector – simpler engine and reduced 

cost

• LNG engine with regenerative cooling chamber was designed and 

demonstrated in a sea level test facility

– Equivalent Isp reached to approximately 350 sec

• To achieve higher performance, JAXA is carrying out a research activity 

on LNG engines focusing on a regenerative cooling type engine
 LE-8 engine 30 kN-class engine IHI in-house engine 

Thrust(Vacuum)(kN) 107  30  98.0  

Isp(Vacuum)(sec) 314  335  354  

Combustion chamber 
pressure(Pc)(MPa) 

1.2 
 1.2  

5.2 
 

Mixture ratio(Thrust 
chamber) 

3.2 
 

3.0 
 

3.5 
 

Chamber cooling Ablative  Ablative  Regenerative  

Nozzle expansion ratio 42  49  150  
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NASA
Recent activities (10 years)
• CFM:

– 1.2 m diameter spherical tank was used to demonstrate insulation
– Zero-boil-off (ZBO) system for LO2 was demonstrated using a flight-like 

cryocooler
– Radio Frequency Mass Gauge (RFMG) for mass gauging in micro-gravity 
– Cryogenic feed systems for multiple RCS engines and main engine in a 

vacuum
• Engines: 

– RCS engines at thrust levels of 88 N (25 lbf), 444 N (100 lbf), and 3.8 kN
(870 lbf)

– 24.5 kN (5.5 klbf) ablative engine for lunar ascent - 2% of target 355 s Isp
@ 150:1 

– Throttling 24 kN (5 klbf) and 8.8 kN (2 klbf) with ablative/film-cooling 
• System: 

– Integrated feed system, RCS, main engine at altitude 
– Flight testing of an integrated LOx/Methane system on terrestrial lander

Current Activities
• CFM - Evolvable Cryogenics project is developing 

– RFMG for cryogenic subsystem of the Robotic Refueling Mission 3    
– Zero Boil-off Transfer (ZBOT) payload for the ISS Microgravity Science 

Glovebox 
– Sub-scale Laboratory Investigation of Cooling Enhancements (SLICE) - welded 

vs. bolted design for skirt designs
• Engines: 

– Currently, small-scale pressure fed (17 kN (4 klbf)) and large-scale pump 
fed (111 kN (25 klbf)) engine components are being built using Advanced 
Manufacturing
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Other Activities

• SpaceX – Raptor Development (738 Klbf, full flow 

staged combustion)

• Blue Origin – BE-4 (550 Klbf oxygen rich staged 

combustion)

• Air Force Research Lab 

– Third Generation Reusable Booster (3GRB)

• Other smaller companies – Masten, TGV, Wask, 

Exquadrum, Sierra Nevada, etc.

• Universities – UTEP, Purdue, etc. 

12
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GAPS
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• Develop a throttle-able regenerative-cooled pump-fed and/or 

pressure-fed engines to address gap for throttling (5:1 – 10:1), 

360-365 sec, and for regenerative-cooled engines in the 25 –

100 kN range  

• Develop 100 to 880-N RCS thrusters with integrated cryogenic 

feed systems to address gap for thruster size/cost and then to 

evaluate GNC impulse bit and thrust requirements

• Develop long duration reliable cryogenic refrigeration systems 

capable of maintaining zero-boil-off and performing 

liquefaction of in-situ produced propellants (several hundred 

watts at ~90 K) 

• Develop composite cryogenic tanks with focus on spherical 

geometry to addresses gap in propellant tank technology 
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GAPS

15

• Develop high performance pressurization systems that improve 
storage density and reduce mass to address gap for use with 
cryogenic propellants

• Develop low-leakage, long-duration cryogenic valves and leak 
detection

• Develop automated fluid couplings

• Conduct extended duration thermal vacuum testing of 
integrated system to address gap of integrated system testing 
in thermal vacuum environment

• Fly a zero-g cryogenic liquid acquisition experiment in space, 
such as on the ISS or in a cis-lunar location to address gap of 
lack of demonstration of LOX/LCH4 in these conditions

• Fly a test vehicle in space as a technology infusion mission to 
demonstrate integrated LOX/LCH4 propulsion systems to 
address gap of no in-space flight experience
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• LOX/LCH4 is an enabler for future exploration with in-situ 
propellant production

• Offers improved performance, improved reusability and 
elimination of toxicity issues for surface operations, and fluid 
commonality

• Foundational R&D activities conducted multiple LOX Methane 
advanced development efforts and hardware demonstrations 
over the last 15 years

• While focused on different ultimate applications these efforts 
combine to significantly reduce the development risks 
associated with future methane propulsion systems for human 
exploration

• Future system level testbed demonstrations (ground) leading to 
a potential risk reduction flight demonstration is a recommended 
path forward

Summary and Conclusions


