

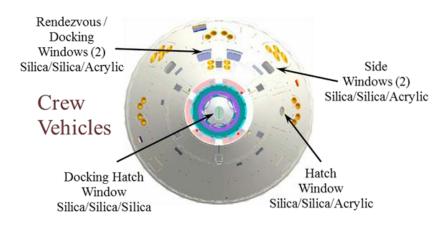
Applying Fused Silica and Other Transparent Window Materials in Aerospace Applications

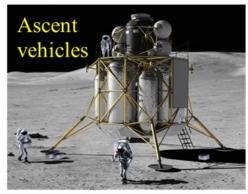
Jon Salem

NASA Glenn Research Center

Cleveland, Ohio

Ceramic Expo, Cleveland, Ohio, April 26th, 2017




Outline

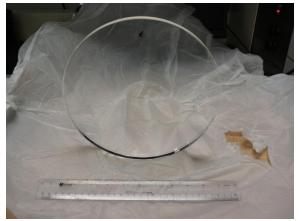
- Transparent Window Materials
 - Applications and the workhorse material
 - Newer materials
 - Application requirements
 - Emerging applications
- Design Guidelines for Structural Ceramic Components
 - Failure mechanisms, initiation sources and size effects
 - Design & Life prediction methods
 - Test methods fracture mechanics & strength based
 - Example

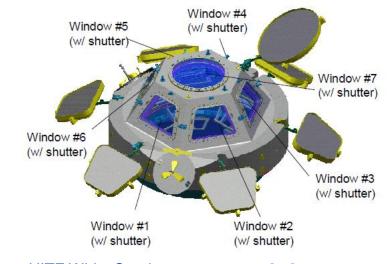
Some Window Applications

Workhorse Material – Fused Silica

- Fused silica has been the historical material of choice:
 - Apollo
 - SkyLab ('73-'74) , Mir...
 - ISS ('98-20xx)
 - Shuttle
 - Orion

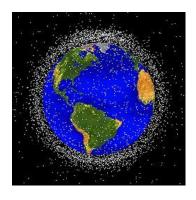
- Only one unexpected failure during an Apollo window proof test.
- "New" materials include spinels & AlON. Higher strength and fracture toughness.

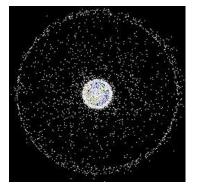


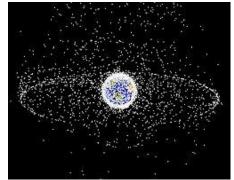

Windows in Use - ISS


Most famous are the Cupola windows, which are shuttered:

□ More typical widow (10" φ):




Some windows are not shuttered and can be damaged by MMOD....



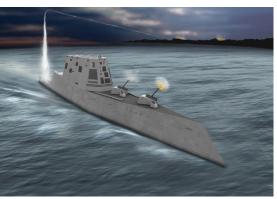
Window Requirements

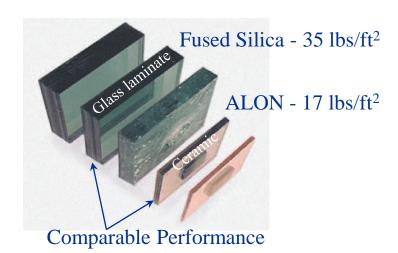
- Thermal shock reentry; sun-shade cycle
- Structural/Mechanical pressure (crack growth)
- Impact residual strength (handling, hyper)

- Optical (haze, transmittance.....imagery, piloting)
- Chemical (atomic oxygen, radiation..)
- Advantages of silica are optical and thermal.
- Disadvantage is low fracture toughness.
- ➤ But why windows at all?! Psychological & protection.

New, Impact Resistant Materials

- A variety of "new" materials have been developed or re-developed:
 - AION
 - Spinels
 - MgO, Alumina, glass-ceramics




19"

24"

One driving force has been military armor:

Might these materials work for spacecraft windows?

Characteristics of "New" Materials

ALON and Spinels:

Material & Grain Size	Bulk Density g/cc	Young's Modulus GPa	Fracture Toughness, MPa√m	
Fused Silica	2.20	72	0.75	
Spinel, 300 μm	3.57	265	1.6	
110 <i>μ</i> m	3.56	269	1.7	
25 <i>µ</i> m			2.4	
ALON, 220 μm	3.67	320	2.2	

> Silica is "light" but very brittle.

Thermal Shock Resistance

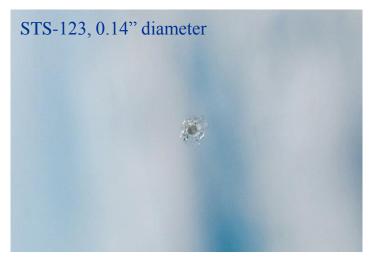
Thermal shock metric:

$$R'' = \frac{(1-v)\lambda\sigma_c}{\alpha E\rho C_p}$$

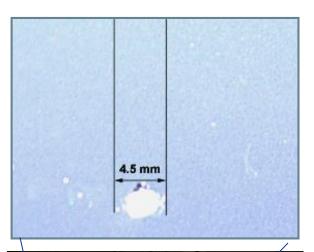
Material	Young's Modulus GPa	Fracture Strength (MPa)	CTE x 10-6/°C α	Thermal Conductivity (W/mK) λ	Heat Capacity (J/gK)	R" (Wcm²/gK)
Silica	72	80	0.5	14	0.77	143
Spinel (coarse grain)	270	80	6	15	0.88	3.5
Spinel (fine grain)	270	160	6	15	0.88	3.5
AION	320	210	5	13	0.92	3.8

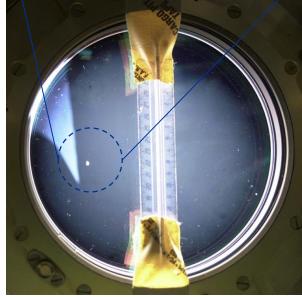
- Positive: similar thermal conductivity.
- Negative: new materials have higher CTE & E.
- Poor thermal shock resistance.....

Structural/Mechanical Property Capability

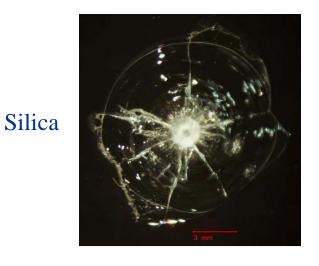

Crack growth related:

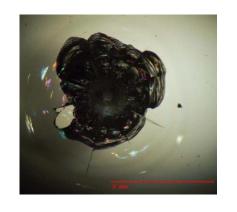
Material	Density (g/cc)	Young's Modulus (GPa)	Fracture Toughness (MPa√m)	Crack Growth Exponent, n	Fracture Strength MPa
Silica	2.2	72	0.75	24 - 40	80
Spinel (coarse grain)	3.6	270	1.6	22	80
Spinel (fine grain)	3.6	270	2.4	50	160
AION	3.7	314	2.2	35 - 50	210

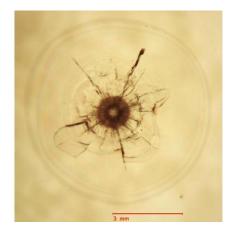

- Positive: New materials are tougher and SCG resistant.
- Negative: New materials are denser and stiffer.
- Better mechanical properties, but higher density.

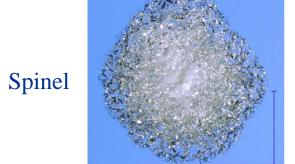


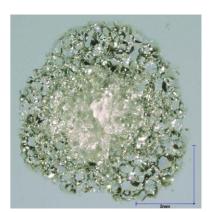
Impact: Shuttle & Station Examples

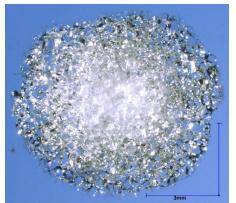







Hyper Velocity Impact of Spinel vs Silica





Central pit with radial and circumferential cracks.

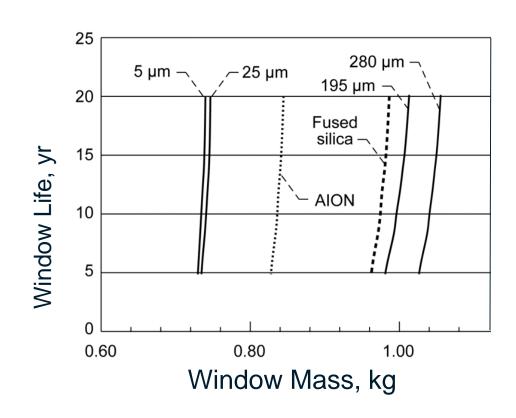
Large pit with gain boundary cracking.

Similar sizes, but very different morphologies. Testing on-going.

Optical Properties & Emerging Applications

Phone screens:

Material	Density (g/cc)	Index of Refraction	Transmission %	Hardness GPa	Young's Modulus (GPa)	Strength MPa	Fracture Toughness (MPa√m)
Strengthened Glass	2.42	1.5	90	6.3	69	~800	0.66
Spinel (coarse grain)	3.6	1.7	~84	16.2	270	80	1.6
Spinel (fine grain)	3.6		~88	16	270	160	2.4
AION	3.7	1.8	~85	18.3	320	210	2.2
Sapphire	3.97	1.8	~88	18.6	380 - 465	400 – 1000	2.1 – 2.5


- Effective fracture toughness due to residual stress > 7 MPa√m!
- Much greater than that of any optical material!!

Relative Mass

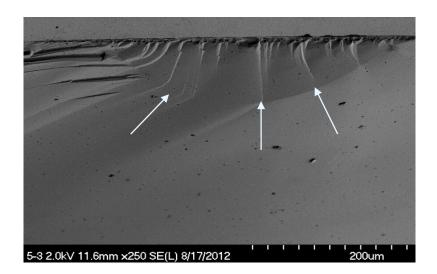
➤ Window mass for a lifetime:

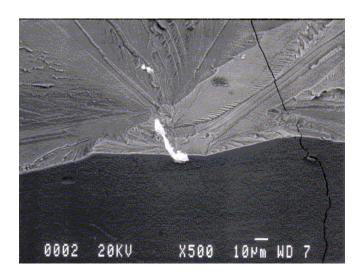
$$m = \left(\frac{t_{f min}}{B}\right)^{\frac{1}{2n}} \left(\frac{K_{Ic}}{Y\sqrt{a_{max}}}\right)^{\frac{2-n}{2n}} \left(\frac{3\pi^2 P \rho^2 D^6}{512} (3+\nu)\right)^{\frac{1}{2}}$$

- Yes, mass can be reduced from a SCG Perspective!
- For spinel, the grain size needs to be small.......

Summary

- Spinel and AION exhibit better fracture toughness and crack growth as compared to glasses, and thus have potential in window systems.
- They can reduce weight from a crack growth perspective.
- Unfortunately, thermal shock resistance metrics are poor component level testing to qualify.
- Impact size is similar, however, the morphology is very different;
 residual strength needs to be measured......
- Phone screen applications appear limited due to low effective fracture toughness and refractive index.



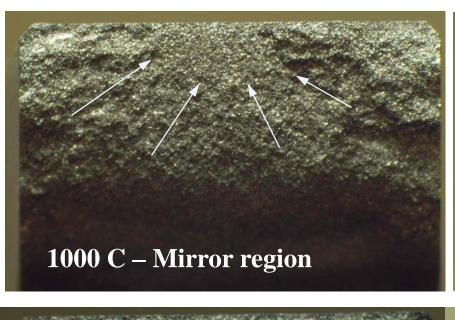

Design Guidelines for Structural Glass and Ceramic Components

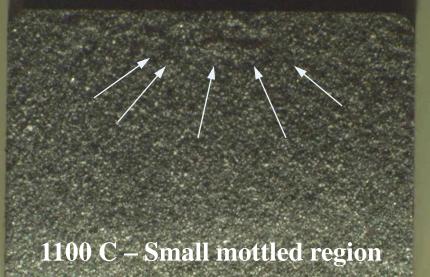
Failure Mechanisms

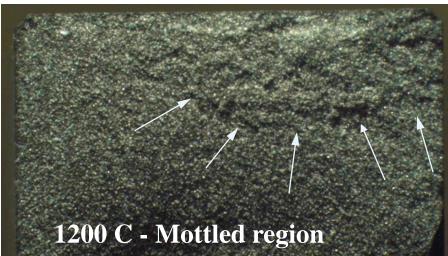
- I. Fast (brittle) fracture due over load w/scale effect.
 - For glasses and single xtals, occurs from imperfects (scratches, checks, and infrequent pores and inclusions).
 - Polycrystals: inclusions, coarse grains, pores and damage.

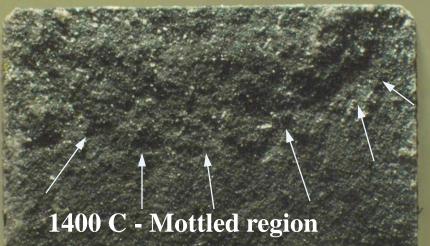


Damage is surface distributed; pores, etc. are volume distributed.

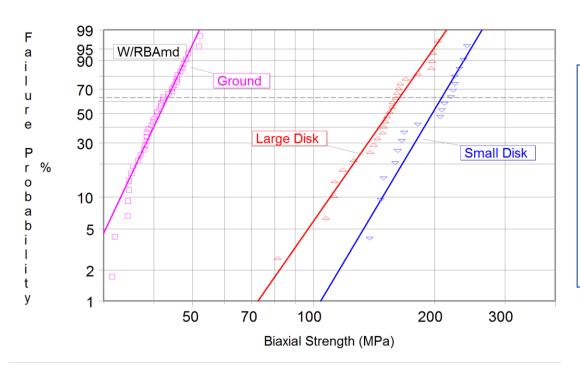

Failure Mechanisms


II. Slow crack growth (SCG) or "static fatigue." Strength decreases with time under static load:





Elevated temperature SCG HfB₂



Size Effects and Flaw Populations

Brittle material without slow crack growth:

Weakest Link Theory:

- Assumes a structure is analogous to a chain with many links; each link may have a different limiting strength
- Catastrophic failure occurs when the weakest link in the chain is broken

- Strength is size dependent. Flaw population can change significantly.
- > Strength is variable; not the inherent property. *Fracture toughness* is the inherent property: Strength results from the fracture toughness and flaw size present.

Decision Tree

Fast Fracture Problem
Weibull distribution
— MOS
— Reliability analysis

Yes

Slow Crack Growth?

Time Dependent Problem

Slow Crack Growth analysis

Threshold design

 $-\sigma < 1$ ksi (glasses)

- Transient reliability
- Deterministic SCG
- Very dry environment

$$t_f = BS_I^{n-2} \sigma^{-n}$$

21

Design Methods

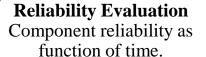
- Margin of Safety:
 - Strength statistics, (m, σ_{θ})
 - Factor of safety; close to threshold
 - Doesn't address SCG directly
 - Does not account for scale.....

$$MoS = \frac{S_{\theta(B-basis)}}{FOS \cdot \sigma_{pred}} - 1 > 0$$

Design Methods

- Weakest Link Theory:
 - CARES/Life: $(m, \sigma_{\theta}, n, B)$
 - strength based transient reliability
 - scale effects, multiple flaw populations
 - slow crack growth($v = Ak^n$)

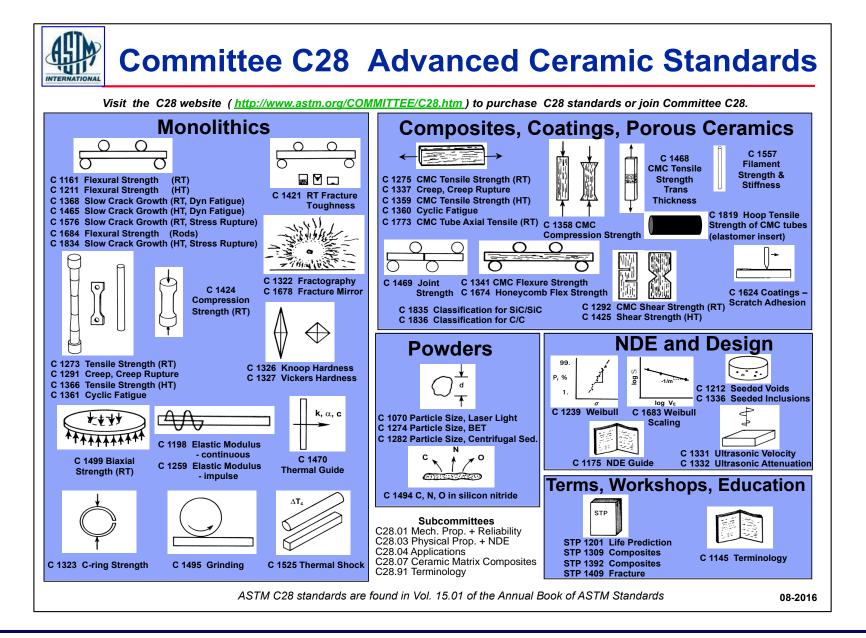
Weakest Link Theory:


- Assumes a structure is analogous to a chain with many links; each link may have a different limiting strength
- Catastrophic failure occurs when the weakest link in the chain is broken

Parameter Estimation

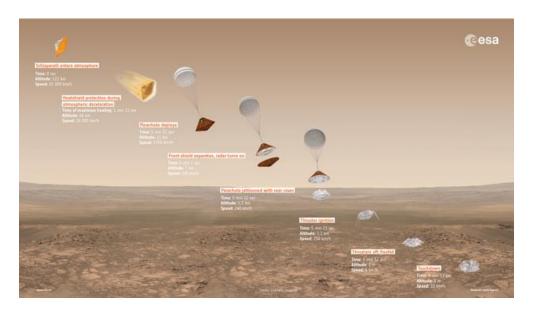
Weibull and fatigue parameter estimates from failure data as function of temperature, finish, etc.

Finite Element Analysis
Output from FEA codes
(stresses, temperatures, volumes)


Design Methods

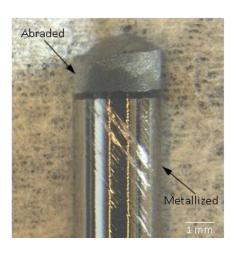
- Deterministic fracture mechanics:
 - NASGRO (m, σ_{θ} , n, A, K_{lc})
 - safety factor(s)
 - slow crack growth
 - required for manned

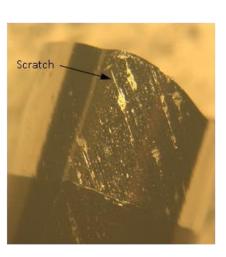
Test Methods



Example – MOMA (Mars Organic Molecule Analyzer)

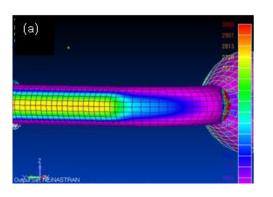
- European Space Agency missions to understand if life ever existed on Mars.
- NASA providing the Mars Organic Molecule Analyzer.

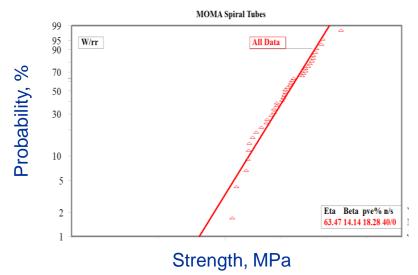




Metal Coated Funnels and Tubes

• What was available:


- Component have many surface scratches etc.
- Failure occurs at surface damage.



MOMA Glass Tubes

• Setup non-standard bend test for tubes and funnels:

MOMA Glass Tubes – MoS Analysis

- Stress level w/vibe of 1 ksi
- A-basis strength allowable of 5.8 ksi
- > MoS = 0.9.
- Short load time, dry environment.

Summary

- New materials exhibit better toughness and crack growth characteristics as compared to silica, and thus have potential in window systems. More work is needed to qualify these materials.
- Some applications appear to be limited due to the low effective fracture toughness and optical properties.
- Many testing and design methods have been developed.
- But, the effects of scale and multiple flaw populations need to be considered in the design process.

Acknowledgements

- Thanks to Jim McMahon (JSC) and Penni Dalton (HEMOD) for funding.
- Thanks to Lynda Estes for many discussions.