

Quantum Communication with a High-Rate Entangled Photon Source

Nathaniel C. Wilson and Dalton W. Chaffee NASA Mentors: Dr. John D. Lekki and Dr. Jeffrey D. Wilson Georgia Institute of Technology Physics Senior Seminar I October 14, 2016

- Current encryption techniques use algorithms that rely on computational assumptions
- Quantum communications rely only on the laws of physics
- Quantum Key Distribution (QKD) protocols typically require the use of either single or entangled photon sources
- We characterize a high-rate entangled photon source and demonstrate free-space QKD

- Developed through Phase 3 SBIR with AdvR, Inc.
- Creates entangled photon pairs via spontaneous parametric down-conversion in a dual element periodically poled potassium titanyl phosphate (KTP) waveguide

Coincidence Counting

• Laser pump current controls laser power entering entangled photon source

- Laser pump current controls laser power entering entangled photon source
- Source creates entangled 800-nm and 1600-nm photons

- Laser pump current controls laser power entering entangled photon source
- Source creates entangled 800-nm and 1600-nm photons
- Sorting optics separate 800-nm from 1600-nm photons

- Laser pump current controls laser power entering entangled photon source
- Source creates entangled 800-nm and 1600-nm photons
- Sorting optics separate the 800-nm from the 1600-nm photons
- Photon detectors count rate of photons received

- Laser pump current controls laser power entering entangled photon source
- Source creates entangled 800-nm and 1600-nm photons
- Sorting optics separate the 800-nm from the 1600-nm photons
- Photon detectors count rate of photons received
- Delay generators account for differences in path length to each photon detector and one generator is swept around the coincidence peak

- Laser pump current controls laser power entering entangled photon source
- Source creates entangled 800-nm and 1600-nm photons
- Sorting optics separate the 800-nm from the 1600-nm photons
- Photon detectors count rate of photons received
- Delay generators account for differences in path length to each photon detector and one generator is swept around coincidence peak
- Coincidence Counter determines how many coinciding (+/- 243 picoseconds)
 800-nm and 1600-nm photons were detected

- Laser pump current controls laser power entering entangled photon source
- Source creates entangled 800-nm and 1600-nm photons
- Sorting optics separate the 800-nm from the 1600-nm photons
- Photon detectors count rate of photons received
- Delay generators account for differences in path length to each photon detector and one is swept around coincidence peak
- Coincidence Counter determines how many coinciding (+/- 243 picoseconds) 800-nm and 1600-nm photons were detected
- Delay sweep and data collection are automated via LabVIEW

• 120 mA

• 80 mA • 120 mA • 160 mA • 200 mA • 240 mA

• 120 mA

• 120 mA

11

- 1. PhotonsDetected₈₀₀ = PhotonsGenerated₈₀₀ * PathEfficiency₈₀₀
- 2. $PhotonsDetected_{1600} = PhotonsGenerated_{1600} * PathEfficiency_{1600}$
- 3. $PhotonsGenerated_{800} = PhotonsGenerated_{1600} = PairsGenerated$
- 4. TrueCoincidences = PairsGenerated * PathEfficiency₈₀₀ * PathEfficiency₁₆₀₀

5. $PairsGenerated = \frac{PhotonsDetected_{800} * PhotonsDetected_{1600}}{TrueCoincidences}$

Coincidence Counting: Total Pairs Generated

13

QKD: Demonstration

- Provably secure method of encryption
- A random key is distributed, then communication can be sent classically with this key
- Different QKD protocols exist
- We demonstrate one such protocol (B92)

- Alice sends photons in one of two polarizations to Bob
- Bob measures the polarization of these photons in one of two bases
- If Eve eavesdrops, it will cause errors in the key
- Afterwards, Bob sends time tags of determined bits to Alice via classical channel
- Alice and Bob share a portion of the key classically to check for errors

QKD: Experimental Design

Time Tags of Determined Bits Are Sent to Alice via Classical Channel

QKD: Experimental Design

- Pockels cells provide voltage-controlled polarization rotation for basis choice
- Polarizing beam
 splitter distinguishes
 Bob's measurements

Time tags of determined bits are sent to Alice via classical channel

- *Pockels* cells operate at 2 MHz
- If Alice sends more than a photon per period, security is compromised
- Periods with exactly one photon Periods with one or more photons • µ =
- Can be calculated assuming source exemplifies *Poisson* emission

Conclusions & Future Work

- Pair generation rate of 880 MHz is 3500 times better than previously used (bulky, expensive) conventional entangled photon source
- Preliminary free-space QKD results show secure communications with bit rate \approx 10 kHz, bit error rate \approx 10%

- Path efficiencies are low, severely limiting coincidence rates
- Much of this loss is unexplained: may occur within source
- Much of the explained loss, as well as 54 kHz of dark counts, ¹⁶⁰⁰ nm Detector Dark Counts

 Comes from the 1600 nm detector
- Better (more expensive) detectors do exist

Signal Chains	Filters in Sorting Optics	Detection Efficiency	Dead Time Effect	Total Known Effects	Total Unknown Effects	Path Efficiency
800 nm	0.484	0.620	0.954	28.6%	1.6%	0.460%
1600 nm	0.689	0.035	0.817	2.0%	3.2%	0.064%

Path efficiency breakdown at 120 mA

- Wide-band amplifier speed and output voltage are the two biggest limiting factors
- Current protocol (B92) is not noise-resistant

Future Work

26

	_					
2016	+	 Isolate and improve lossy components 				
2016-2017	-	Design QKD protocol to use time correlation of entangled photons to reduce noise				
2017	-	_ Demonstrate QKD across 550 m link between buildings				
20202		Demonstrate QKD between				
2020?	Τ	ground and low-earth orbit in daylight				

Questions?

QKD: B92 (Back up)

Alice Bit/Basis	Bob Basis	Bob Measurement	Bob Bit
0 (0° polarization)	0°	0°	?
1 (45° polarization)	0°	0°/90°	?/1
1	45°	90°	?
0	45°	0°/90°	0/?