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Introduction

• Current encryption techniques use algorithms that rely on 

computational assumptions

• Quantum communications rely only on the laws of physics

• Quantum Key Distribution (QKD) protocols typically require

the use of either single or entangled photon sources

• We characterize a high-rate entangled photon source and

demonstrate free-space QKD
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Entangled Photon Source

• Developed through Phase 3 SBIR with AdvR, Inc.

• Creates entangled photon pairs via spontaneous parametric 

down-conversion in a dual element periodically poled potassium 

titanyl phosphate (KTP) waveguide
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Coincidence Counting



Coincidence Counting: Experimental Design
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Coincidence Counting: Experimental Design

• Laser pump current controls laser power entering

entangled photon source
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Coincidence Counting: Experimental Design

• Laser pump current controls laser power entering entangled photon source
• Source creates entangled 800-nm and 1600-nm photons
• Sorting optics separate the 800-nm from the 1600-nm photons
• Photon detectors count rate of photons received

• Delay generators account for differences in path length to each  
photon detector and one generator is swept around the coincidence 

peak
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• Coincidence Counter determines how

many coinciding (+/- 243 picoseconds) 

800-nm and 1600-nm photons were 

detected



Coincidence Counting: Experimental Design

• Laser pump current controls laser power entering entangled photon source

• Source creates entangled 800-nm and 1600-nm photons

• Sorting optics separate the 800-nm from the 1600-nm photons

• Photon detectors count rate of photons received

• Delay generators account for differences in path length to each photon

detector and one is swept around coincidence peak
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• Coincidence Counter determines how many 
coinciding (+/- 243 picoseconds) 800-nm and 
1600-nm photons were detected

• Delay sweep and data collection are 

automated via LabVIEW



Coincidence Counting: Results
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Coincidence Counting: Results
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Coincidence Counting: Results
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Coincidence Counting: Results
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Coincidence Counting: Results
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Coincidence Counting: Total Pairs Generated

1. 𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑800 = 𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑800 ∗ 𝑃𝑎𝑡ℎ𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
800

2. 𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑1600 = 𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑1600 ∗ 𝑃𝑎𝑡ℎ𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
1600

3. 𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑800 = 𝑃ℎ𝑜𝑡𝑜𝑛𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑1600 = 𝑃𝑎𝑖𝑟𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

4. 𝑻𝒓𝒖𝒆𝑪𝒐𝒊𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆𝒔 = 𝑷𝒂𝒊𝒓𝒔𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅 ∗ 𝑷𝒂𝒕𝒉𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚
𝟖𝟎𝟎

∗ 𝑷𝒂𝒕𝒉𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚
𝟏𝟔𝟎𝟎

5. 𝑷𝒂𝒊𝒓𝒔𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅 =
𝑷𝒉𝒐𝒕𝒐𝒏𝒔𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅𝟖𝟎𝟎 ∗ 𝑷𝒉𝒐𝒕𝒐𝒏𝒔𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅𝟏𝟔𝟎𝟎

𝑻𝒓𝒖𝒆𝑪𝒐𝒊𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆𝒔
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Coincidence Counting: Total Pairs Generated
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QKD: Demonstration



QKD: Overview

• Provably secure method of encryption

• A random key is distributed, then communication

can be sent classically with this key

• Different QKD protocols exist

• We demonstrate one such protocol (B92)
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QKD: B92 Protocol

• Alice sends photons in one of two polarizations to Bob

• Bob measures the polarization of these photons in one of two bases

• If Eve eavesdrops, it will cause errors in the key

• Afterwards, Bob sends time tags of determined bits to Alice via classical channel

• Alice and Bob share a portion of the key classically to check for errors

16
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QKD: Experimental Design
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Alice BobEve?

Time Tags of Determined Bits Are Sent to Alice via Classical Channel



QKD: Experimental Design
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Alice BobEve?

Time tags of determined bits are sent to Alice via classical channel

• Pockels cells provide 
voltage-controlled 
polarization rotation 
for basis choice

• Polarizing beam 
splitter distinguishes 
Bob’s measurements



QKD: Results
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QKD: Results

• Pockels cells operate at 2 MHz

• If Alice sends more than a photon per period, security is compromised

• 𝜇 =
𝑃𝑒𝑟𝑖𝑜𝑑𝑠 𝑤𝑖𝑡ℎ 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑜𝑛𝑒 𝑝ℎ𝑜𝑡𝑜𝑛

𝑃𝑒𝑟𝑖𝑜𝑑𝑠 𝑤𝑖𝑡ℎ 𝑜𝑛𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

• Can be calculated assuming source exemplifies Poisson emission
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QKD: Results
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Conclusions & Future Work



Conclusions

• Pair generation rate of 880 MHz is 3500 times better than

previously used (bulky, expensive) conventional entangled 

photon source

• Preliminary free-space QKD results show secure 

communications with bit rate ≈ 10 kHz, bit error rate ≈ 10%
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• Path efficiencies are low, severely limiting coincidence rates

• Much of this loss is unexplained: may occur within source

• Much of the explained loss, as well as 54 kHz of dark counts, 

comes from the 1600 nm detector

• Better (more expensive) detectors do exist

1600 nm Detector Dark Counts

Conclusions: Coincidence Counting Limitations
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Signal 
Chains 

Filters in Sorting 
Optics 

Detection 
Efficiency 

Dead Time 
Effect 

Total 
Known 
Effects 

Total 
Unknown 

Effects 

Path 
Efficiency 

800 nm 0.484 0.620 0.954 28.6% 1.6% 0.460% 

1600 nm 0.689 0.035 0.817 2.0% 3.2% 0.064% 

 

Path efficiency breakdown at 120 mA



Conclusions: QKD Limitations

• Wide-band amplifier speed and output voltage

are the two biggest limiting factors

• Current protocol (B92) is not noise-resistant
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Future Work
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Isolate and improve lossy components

Design QKD protocol to use time correlation of 
entangled photons to reduce noise

Demonstrate QKD across 550 m 
link between buildings

Demonstrate QKD between 
ground and low-earth orbit in 
daylight

2016

2016-2017

2017

2020?
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Questions?



QKD: B92 (Back up)
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