

Outline

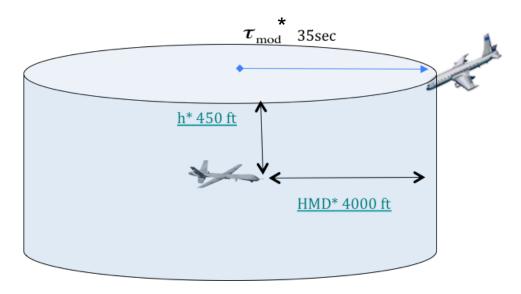
- Background
- Modified Tau and Its Limitation
- Time to Protected Zone
- Surveillance Error Sensitivity
- Conclusion

Detect and Avoid

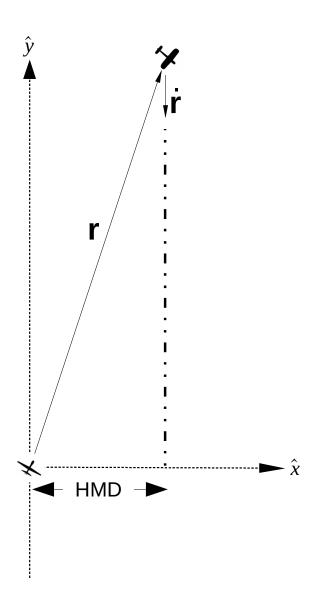
- Unmanned Aircraft Systems (UAS) will share airspace with manned aircraft
- Detect and Avoid (DAA) system for UAS replaces human "see and avoid"
- RTCA has completed Phase I Minimum Operational Performance Standards (MOPS) for DAA
- The MOPS targets UAS that can carry large and high-power sensor systems and operate in non-terminal areas
- Phase II work will extend to additional operations and UAS categories

NASA's Ikhana UAS

DAA Well Clear


- A DAA system keeps the UAS "Well Clear" of other aircraft
- UAS is assumed to be on instrument flight rules (IFR)
- A DAA Well Clear (DWC) zone must
 - be large enough to mitigate collision risks
 - be small enough to minimize operational impacts
- Traffic Collision Avoidance System II (TCAS II)
 - UAS can equip TCAS II as a safety net when DAA fails
 - DWC definition in Phase I MOPS driven largely by TCAS II interoperability
 - DWC should ideally enclose TCAS II's alerting zone

DWC Definition (Phase I)


- DWC
 - h: altitude difference
 - HMD: Horizontal miss distance (at closest point of approach)
 - \circ τ_{mod} : modified tau, a horizontal time metric
- DWC is violated when all three variables fall below their respective thresholds (* represents threshold)

Horizontal Miss Distance

- r: relative position of intruder
- **r**: relative velocity of intruder
- HMD: predicted distance at horizontal closest point of approach (CPA)
- (predicted) Time to CPA

$$t_{\rm cpa} = -rac{r \cdot \dot{r}}{\dot{r} \cdot \dot{r}}$$

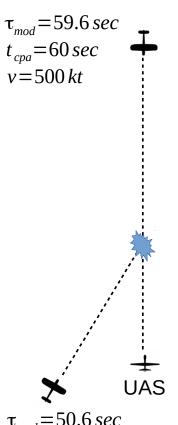
Modified Tau

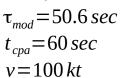
- Tau $\tau = -\frac{r}{\dot{r}}$ "estimates" $t_{\rm cpa}$ r is range
 - \dot{r} is range rate
 - Advantage: easy to compute, uses only range information
 - Limitation: shows no urgency for close, almost parallel flights
- Modified Tau: all intruders within a range of D_{mod} are treated with highest urgency

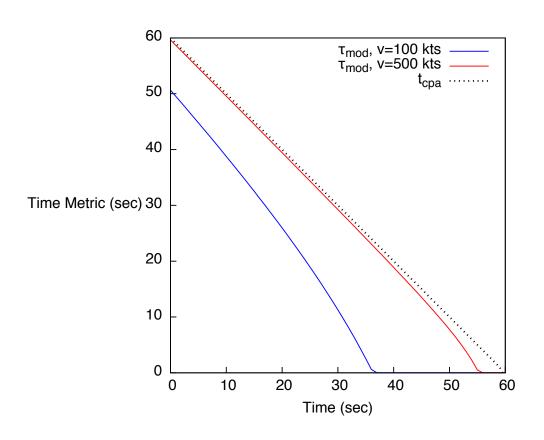
$$\tau_{\text{mod}} = \begin{cases} -\frac{r^2 - D_{\text{mod}}^2}{r\dot{r}}, & \text{if } r > D_{\text{mod}} \\ 0, & \text{if } r \leq D_{\text{mod}} \end{cases}$$

For DWC,
$$D_{\rm mod} = {\rm HMD}^* = 4000 \ {\rm ft}$$

 $\tau_{\rm mod} \ -> \tau \ {\rm when} \ D_{\rm mod} \ -> 0$


- DWC uses $au_{
 m mod}$ because TCAS II also uses $au_{
 m mod}$
- DAA alerting requirements use $au_{
 m mod}$ too



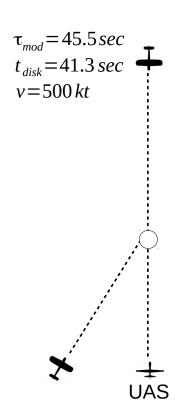

Example of Modified Tau

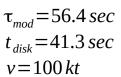
Non-accelerating intruders v is relative to the UAS HMD = 0

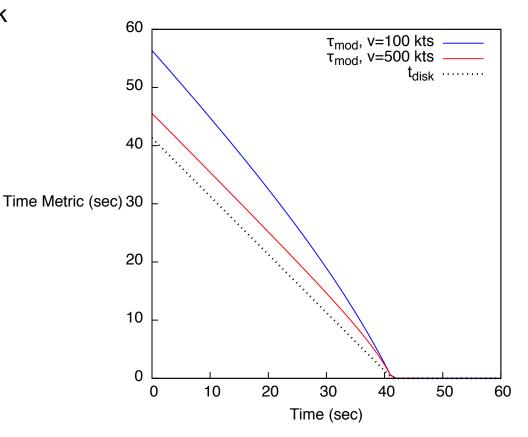
• $\tau_{
m mod}$ approaches $t_{
m cpa}$ when $v ext{-}\!\!>\!\!\infty$

Limitations of Modified Tau

- au_{mod}
 - does not correspond to a physical event
 - does not change linearly with time
- Example: For a co-altitude, head-on encounter, $\tau_{\rm mod}$ = 75 sec now.
 - o How long until the ownship loses Well Clear ($\tau_{\rm mod}$ *= 35 sec) ?
 - Answer is NOT 40 sec
- For alerting, prioritization of intruders using $\tau_{
 m mod}$ lacks physical basis
 - \circ $\tau_{\rm mod}$ is neither the time to CPA nor the time to the $D_{\rm mod}$ disk
 - Dependency on relative speed



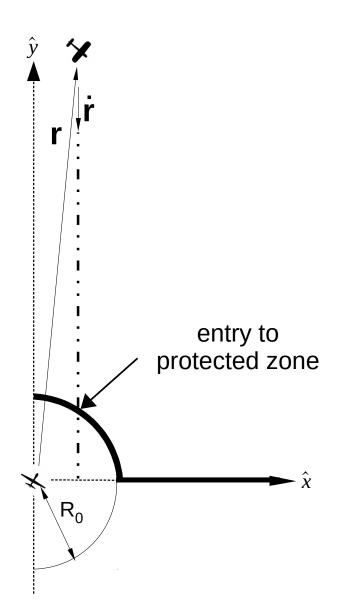

Another Example of Modified Tau



Non-accelerating intruders v is relative to the UAS HMD = 0

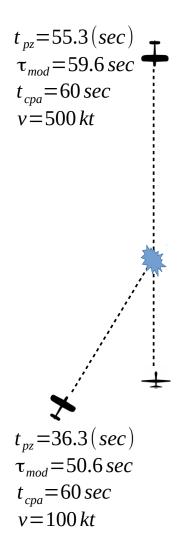
 t_{disk} : time to the D_{mod} disk

Time to Protected Zone



- This work proposes the Time to Protected Zone, $t_{\rm pz}$
- $t_{\rm pz}$ has advantages over $au_{
 m mod}$
 - Corresponds to a physical event
 - Is linear with time
 - \circ Intruder prioritization by an alerting algorithm using $t_{\rm pz}$ has a physical basis
- t_{pz} is also suitable for DAA interoperability with TCAS II
- Same framework for both DWC and alerting algorithm

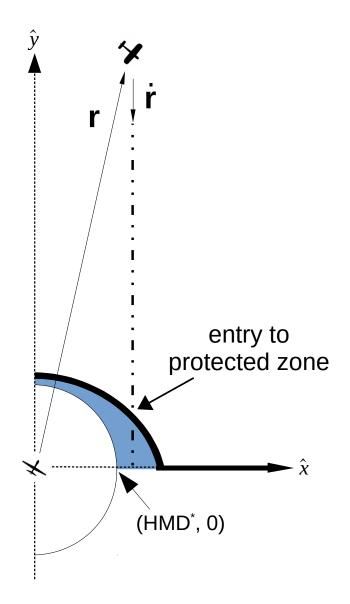
Time to Protected Zone for DWC


- t_{pz}: time to Protected Zone
 - o is the time to the disk (t_{disk})
 - \circ or t_{cpa} if not entering disk
 - o or 0 if already inside disk
- t_{cpa} a special case in which $R_0 = 0$
- Interoperability with TCAS II
 - $o t_{pz} \le \tau_{mod} \text{ if } R_0 = D_{mod}$
 - o DWC with $t_{\rm pz}$ instead of $\tau_{\rm mod}$ using the same threshold (35 sec) is larger
 - Maintains DWC/TCAS boundary
- Example: set $R_0 = \text{HMD}^* = 4000 \text{ ft}$

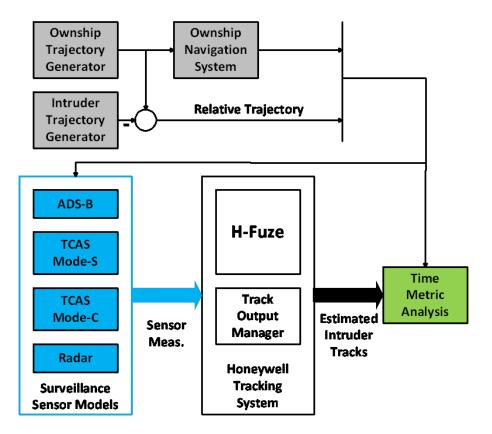


Example of Time to Protected Zone

Non-accelerating intruders *v* is relative to the ownship

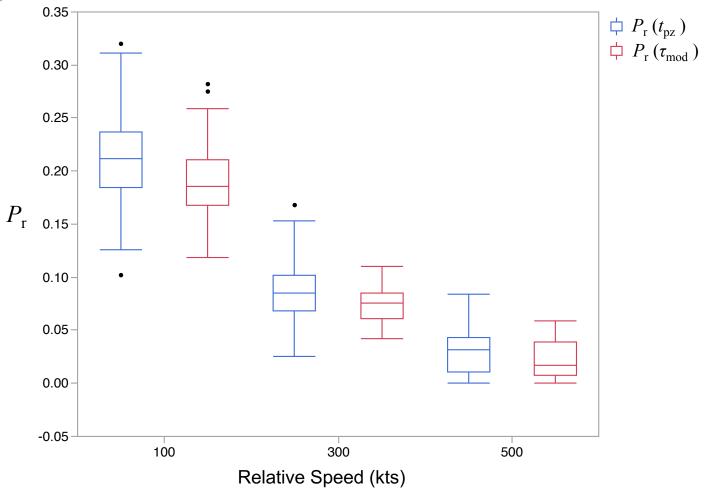


DAA Alerting


- The Protected zone can have an additional buffer to account for surveillance noise and reduce missed alerts
- Alert is issued if intruder is predicted to enter the protected zone
- Buffer size can be a function of individual intruders' equipage
 - ADS-B out
 - Mode S/C
 - Unequipped

Sensitivity of t_{pz} to Sensor Errors

- Compared to $\tau_{\rm mod}$, $t_{\rm pz}$ is potentially more sensitive to surveillance sensor errors, because it depends on heading measurements.
- Analysis of simulated encounters with realistic sensor errors



• Results show sensitivity of $t_{\rm pz}$ is comparable to that of $au_{
m mod}$

Relative Speed

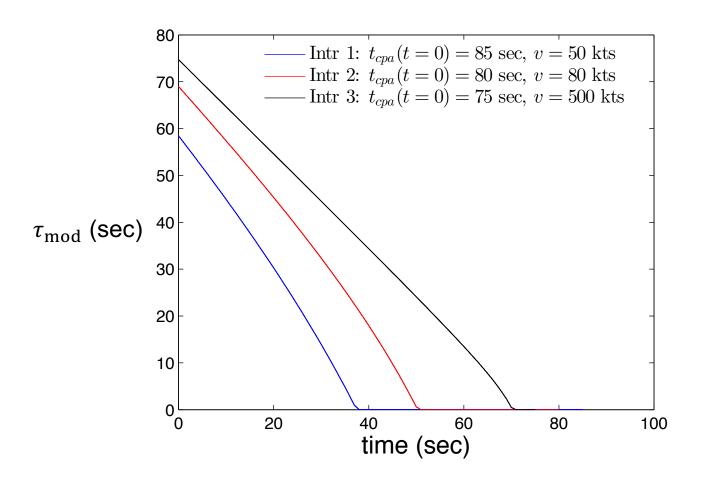
 $\mbox{\ensuremath{P_{r}}}$ - probability of reversal of a time metric during the progression of an non-accelerating encounter

Conclusions

- A new time metric called Time to Protected Zone, $t_{\rm pz}$ is proposed for use in UAS's Detect and Avoid (DAA) systems.
- Three advantages over modified tau, $au_{
 m mod}$
 - It corresponds to a physical event
 - It is linear with real time during progression of an encounter
 - \circ Prioritization of intruders by $t_{\rm pz}$ has a physical basis
- For alerting, the protected zone can be defined to be a function of surveillance errors to provide potentially better alerting performance.
- Sensitivities of $\tau_{
 m mod}$ and $t_{
 m pz}$ to surveillance noises are comparable.

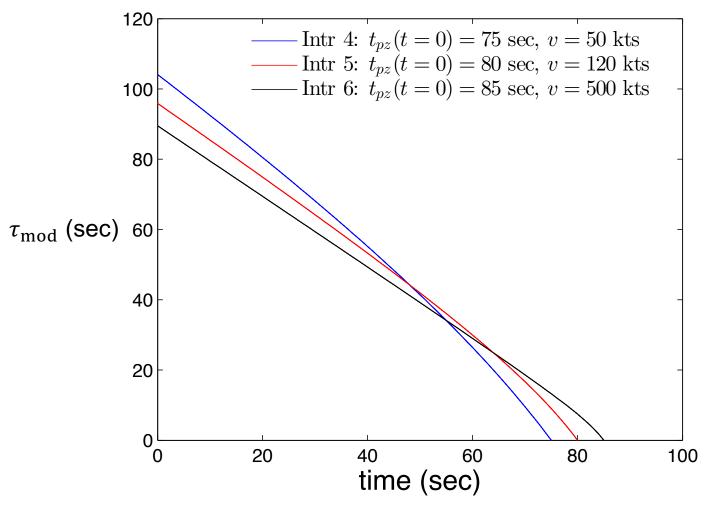
Future Work

- RTCA Phase II MOPS
- Alerting performance



Backup Slides

Intruder Prioritization



- t_{cpa} predicts intruder 3 as the highest threat
- $\tau_{
 m mod}$ predicts intruder 1 as the highest threat

Intruder Prioritization

- t_{pz} predicts intruder 4 as the highest threat
- $\tau_{\rm mod}$ predicts intruder 6 as the highest threat

Modified Tau for DWC

- DWC uses $au_{
 m mod}$ because TCAS II also uses $au_{
 m mod}$
- $au_{
 m mod}$ is range-based and therefore not sensitive to TCAS's poor bearing sensor measurements
- Even with the use of $\tau_{\rm mod}$, DWC cannot completely enclose TCAS II resolution advisory zone due to complicated alerting logic in TCAS that
 - does not use HMD consistently
 - has altitude-dependent thresholds
 - \circ uses slant range $au_{
 m mod}$ (DWC uses horizontal $au_{
 m mod}$)

Sensitivity of t_{pz} to Sensor Errors

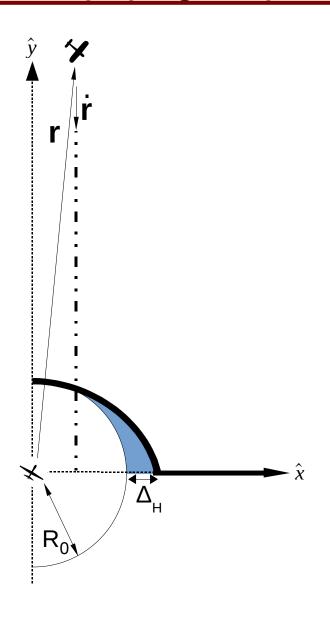
- Compared to $\tau_{\rm mod}$, $t_{\rm pz}$ is potentially more sensitive to surveillance sensor errors, because it depends on heading measurements.
 - Fluctuating values may cause the alert type to vary back and forth
 - Inaccurate values may advance or delay the onset of an alert
- Analysis of simulated encounters with modeled realistic surveillance errors to quantify the sensitivity
- Sensitivity metrics lower is better
 - P_r probability of reversal of a time metric during the progression of an nonaccelerating encounter
 - \circ $|\Delta|_{avg}$ average absolute error of a time metric as a result of surveillance errors
 - Both metrics are zero in the absence of surveillance errors

Test Matrix

Doromotor	Value
Parameter	Value
Intruder Equipage	ADS-B, Mode-S, Mode-C, None
Relative Speed (kts)	100, 300, 500
HMD (ft)	0, 1000, 2000, 3000, 4000
Relative Altitude (ft)	-500, 0, 500
Relative Heading (deg)	0, 45, 90
3 (3,	
Passing	in front, behind (if HMD > 0)

- 972 encounters in total
- Intruder has a constant velocity
- Relative heading of 0 deg means a head-on

Surveillance Sensor Errors



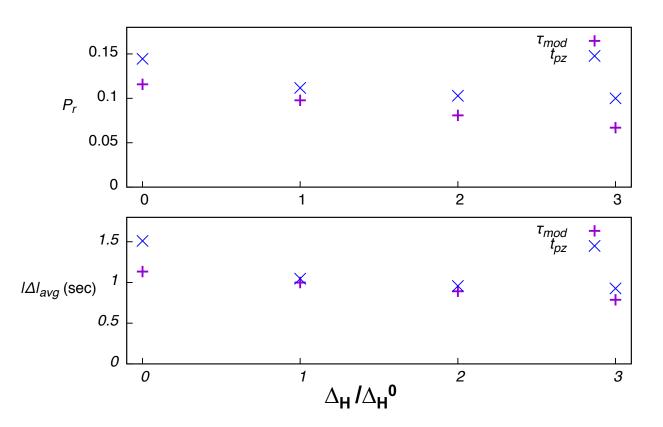
- Sensor models are validated by flight test data
 - ADS-B: accurate position and velocity
 - Active surveillance for Mode S and Mode C: accurate range and altitude, noisy bearing
 - Air-to-air radar: accurate range and bearing
- Tracker (Honeywell Tracking System): a multi-intruder, multi-sensor fusion system
 - Data association
 - Track management
 - Track estimation

Equipage-Specific Protected Zone

For this work, the buffer zone width (blue) increases linearly from 0 at $y = R_0$ to Δ_H at y = 0

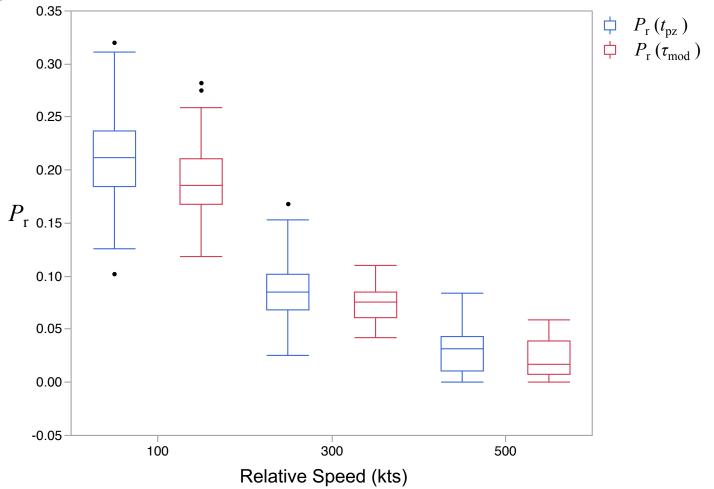
 $\Delta_{\rm H}$: intruder equipage dependent

Benchmark values


 $\Delta_{\rm H}{}^0$ = 900 ft for ADS-B intruders 1700 ft for mode-S and mode-C 1900 ft for unequipped intruder

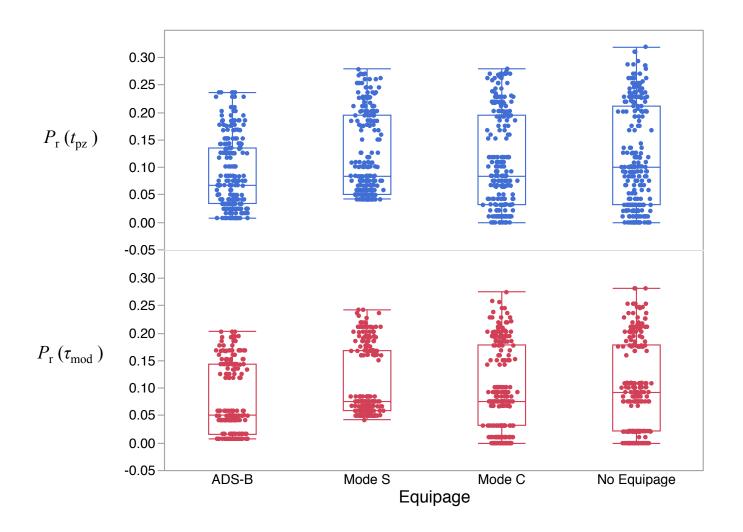
Simulations use 0, 1, 2, and 3 times of Δ_H^0

Aggregate Results


When $\Delta_{\rm H}/\Delta_{\rm H}^0=1$, τ_{mod} and $t_{\rm pz}$ have small differences in sensitivity (14% Pr, 5% $|\Delta|_{\rm avg}$). Likely not significant enough to impact alerting performance

- P_r probability of reversal of a time metric during the progression of an non-accelerating encounter
- $|\Delta|_{avg}$ average absolute error of a time metric as a result of surveillance errors

Relative Speed


$$\delta t \approx t \left(\frac{\sigma_r}{r} + \frac{\sigma_{\dot{r}}}{\dot{r}} \right) \propto \frac{1}{\dot{r}}$$

Since the 2^{nd} term dominates and $\sigma_{\dot{r}}$ is constant for ADS-B and radar

Intruder Equipage

