# CONFIDENCE LEVEL BASED APPROACH TO TOTAL DOSE SPECIFICATION FOR SPACECRAFT ELECTRONICS

M.A. Xapsos<sup>1</sup>, C. Stauffer<sup>2</sup>, A. Phan<sup>2</sup>, S.S. McClure<sup>3</sup>, R.L. Ladbury<sup>1</sup>, J.A. Pellish<sup>1</sup>, M.J. Campola<sup>1</sup> and K.A. LaBel<sup>1</sup> <sup>1</sup>NASA Goddard Space Flight Center, Greenbelt, MD

<sup>2</sup>AS&D, Inc., Greenbelt, MD

<sup>3</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Supported by the NASA Living With a Star Space Environment Testbed Program

To be presented by Mike Xapsos at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), NASA/GSFC, Greenbelt, MD, June 26-29, 2017.

# NASA

# Outline

- Background
- Device Failure Distributions in Total Dose
- Total Dose Distributions in Space
- Device Failure Probability during a Mission
- Conclusions
  - Failure Probability (P<sub>fail</sub>) vs. Radiation Design Margin (RDM)

# Space Environment Model Use in Spacecraft Life Cycle



To be presented by Mike Xapsos at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), NASA/GSFC, Greenbelt, MD, June 26-29, 2017





4

# **Radiation Hardness Assurance Overview**

- Starting with mission requirements, methodology consists of 2 branches of analyses that lead to parts categorization
  - Parts analysis
  - Environment analysis





# **Radiation Hardness Assurance Overview**

- Parts are categorized for flight acceptability and possible radiation lot acceptance testing by Radiation Design Margin (RDM).
- RDM =  $R_{mf} / R_{spec}$
- R<sub>mf</sub> is mean failure level of part
- R<sub>spec</sub> is total dose level of space environment
- Difficulties can arise because
  - Part failure levels can vary substantially from the mean, especially COTS
  - Environment is dynamic and must be predicted years in advance
- RDM based approach results from use of deterministic AP8/AE8 trapped particle models
- RDM used as a "catch-all" to cover all uncertainties in environment and device variations
- Propose modified approach
  - Use device failure probability during a mission instead of RDM

# **Devices Tested**

- Solid State Devices, Inc.
  SFT2907A bipolar transistors
  - Used for high speed, low power applications
  - 10 devices TID tested for MMS project at NASA/GSFC gamma ray facility to 100 krad(Si)
- Amptek, Inc. HV801 optocouplers
  - GaAIAs parts manufactured in liquid phase epitaxially grown process
  - 6 devices DDD tested for JUNO project at UC Davis Cyclotron with 50 MeV protons

#### 4 stacked MMS spacecraft



Credit: http://mms.gsfc.nasa.gov



### **Device Failure Distribution SFT2907A Bipolar Transistors**



7

# Total Dose Probability Distribution Calculations

- TID and DDD probability distributions were calculated for each orbit and mission duration for confidence levels ranging from 1 to 99%
  - AP9/AE9 Monte Carlo code used to simulate 99 histories for each case
  - ESP solar proton calculations done for 1 to 99% confidence levels
  - All energy spectra were transported through shielding levels from 10 to 1000 mils Al using NOVICE code and converted to doses
  - TID and DDD for each radiation were separately ranked for confidence levels ranging from 1 to 99% and summed for same confidence and shielding levels



## TID Probability Distributions for 1 Year 10 – 1000 mils Aluminum

#### Low Inclination LEO

#### GEO





## Failure Probabilities SFT2907A Bipolar Transistor

 $P_{fail} = \int [1 - H(x)] \cdot g(x) dx$ 

H(x) = CDF for environment dose g(x) = PDF for device failure

Failure probability (P<sub>fail</sub>) is the probability of a total dose failure during a mission



# Confidence Level vs. RDM for 10 years in GEO



# Conclusions



- An approach to total dose radiation hardness assurance was developed that includes variability of the space radiation environment.
- Examples showed radiation environment variability is at least as significant as variability of total dose failures in devices measured in the laboratory.
  - New approach is more complete
  - Uses consistent evaluation of each radiation in the space environment through use of confidence levels
- Advantages of using P<sub>fail</sub> instead of RDM are:
  - P<sub>fail</sub> is an objectively determined parameter because complete probability distributions are used to calculate it; gives designers more trade space
  - Better characterization of device radiation performance
  - Allows direct comparison of the total dose threats for different devices and missions, regardless of whether degradation is due to TID or DDD
  - More amenable to circuit, system and spacecraft reliability analysis

# Acronyms

- AE9 Aerospace electron model-9
- AP9 Aerospace proton model-9
- CDF cumulative distribution function
- COTS commercial off the shelf
- DDD displacement damage dose
- ESP Emission of Solar Protons (model)
- FP failure probability
- GEO geostationary Earth orbit
- HST Hubble Space Telescope
- JUNO JUpiter Near-polar Orbiter



- LEO low Earth orbit
- MMS Magnetospheric MultiScale
- NOVICE Numerical Optimizations, Visualizations and Integrations on Computer Aided Design (CAD)/Constructive Solid Geometry (CSG) Edifices
- PDF probability density function
- RDM radiation design margin
- TID total ionizing dose

# **BACKUP SLIDES**



# Device Failure Distribution HV801 Optocoupler





## DDD Probability Distributions for 1 Year 10 – 1000 mils Aluminum

#### Low Inclination LEO

#### GEO



# Failure Probabilities HV801 Optocoupler



 $P_{fail} = \int [1 - H(x)] \cdot g(x) dx$ 

H(x) = CDF for environment dose g(x) = PDF for device failure

Failure probability (P<sub>fail</sub>) is the probability of a total dose failure during a mission

