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It has been well-known that under the assumption of a constant uniform mean
flow, the acoustic wave propagation equation can be formulated as a boundary inte-
gral equation, in both the time domain and the frequency domain. Compared with
solving partial differential equations, numerical methods based on the boundary
integral equation have the advantage of a reduced spatial dimension and, hence, re-
quiring only a surface mesh. However, the constant uniform mean flow assumption,
while convenient for formulating the integral equation, does not satisfy the solid
wall boundary condition wherever the body surface is not aligned with the uniform
mean flow. In this paper, we argue that the proper boundary condition for the
acoustic wave should not have its normal velocity be zero everywhere on the solid
surfaces, as has been applied in the literature. A careful study of the acoustic energy
conservation equation is presented that shows such a boundary condition in fact
leads to erroneous source or sink points on solid surfaces not aligned with the mean
flow. A new solid wall boundary condition is proposed that conserves the acoustic
energy and a new time domain boundary integral equation is derived. In addition
to conserving the acoustic energy, another significant advantage of the new equation
is that it is considerably simpler than previous formulations. In particular, tangen-
tial derivatives of the solution on the solid surfaces are no longer needed in the
new formulation, which greatly simplifies numerical implementation. Furthermore,
stabilization of the new integral equation by Burton-Miller type reformulation is
presented. The stability of the new formulation is studied theoretically as well as
numerically by an eigenvalue analysis. Numerical solutions are also presented that
demonstrate the stability of the new formulation.

I. Introduction

The numerical solution of sound scattering by an acoustically large body remains a significant
challenge due to the high demand on computational resources that are required to resolve the
acoustic waves of short wavelengths. It is well-known that under the assumption of a constant
mean flow, the acoustic wave propagation is governed by the convective wave equation that, in turn,
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can be converted into a boundary integral equation. The boundary integral equation approach has
the advantage of reducing the spatial dimensions of the problem by one, making it an attractive
computational method for calculating sound scattering and shielding at mid to high frequencies.
In this paper, we consider the problem of acoustic scattering by rigid bodies in the presence of a
uniform flow using the boundary integral equation approach. The present approach is based on the
time domain boundary integral equation. The time domain approach has some distinct advantages
over a frequency domain approach. Most notably, scattering solutions at all frequencies are obtained
within one single computation. In addition, broadband noise sources and time dependent transient
signals can be simulated and studied. The time domain approach also couples naturally with
nonlinear computations where many frequencies are generated.
Previously, scattering of sound waves by rigid bodies with flow has been studied, in both the
frequency domain and the time domain. In [30], acoustic radiation in moving flow was formulated
as a boundary integral equation in the frequency domain. The nonuniqueness of the exterior problem
was dealt with by applying the Burton-Miller reformulation procedure.1 The time domain boundary
integral equation approach for scattering by moving surfaces was first formulated and studied in
[28]. More recent studies of the time domain approach in the presence of a mean flow can be found
in [13, 16, 19].
A major difference between the current approach and those taken previously is in the treatment of
the boundary condition at solid surfaces in the presence of flow. While the linear acoustic problem
as a perturbation over the mean flow can be considered separately from the mean flow, an implicit
condition is that the mean flow itself satisfies the solid wall boundary condition. The assumption of
a constant mean flow is an approximation to the actual mean flow and this assumption is made to
make the formulation of a boundary integral equation possible. While this facilitates the conversion
of the partial differential equation to the boundary integral equation, the simplified mean flow itself
obviously can not satisfy the physical boundary condition at solid boundaries wherever the surface
is not aligned with the assumed constant mean flow. As pointed out in [28], the boundary integral
equation derived based on such an assumption would be formally valid when Mn � 1 where Mn is
the Mach number of mean flow normal to the body surface. In this paper, we take a closer look at
the boundary condition to be used for scattering of acoustic waves at solid surfaces whereMn is not
zero. In all the previous studies, a boundary condition of normal acoustic velocity being zero has
been applied everywhere including the surfaces where Mn 6= 0. However, an analysis of the acoustic
energy equation shows that the usual boundary condition would lead to nonzero energy flux at
surfaces where Mn 6= 0. A new formulation is derived based on this acoustic energy consideration,
and an alternative boundary condition is proposed by the requirement that energy flux be zero at
solid surfaces. As we will see, due to the structure of the integral equation, the new formulation
also becomes much simpler than those found in the literature for scattering with flow, which is of
great benefit for computation.
In addition to the modification of boundary condition at solid surfaces, a Burton-Miller type re-
formulation of the integral equation consistent with the new boundary condition is also presented.
It is well-known that the direct solution of the boundary integral equation for exterior scattering
problems is prone to numerical instabilities.1,2, 6, 13,17,18,30 In the time domain, the instability is
more easily excited because all frequencies within the numerical resolution are present. There are
generally two approaches for dealing with this instability. One is the Burton-Miller reformulation
which has been widely used for frequency domain exterior scattering problems. Recently, it has
been shown that Burton-Miller reformulation is effective for time domain as well.2,6, 18 Another
method for the removal of the instability is the CHIEF method.17,29 In the present study, we apply
the Burton-Miller technique to our new formulation for the elimination of instabilities.
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The rest of the paper is organized as follows. In Section 2, an integral relation for acoustic wave
propagation is derived for a constant mean flow in a general direction. Then, the time domain
boundary integral equation for scattering by rigid bodies is derived in Section 3. In Section 4, a
Burton-Miller type reformulation of time domain boundary integral equation is presented and a
discussion on the stability of the new formulation is given in Section 5. Numerical methods for
the time domain boundary integral equation are discussed in Section 6. Stability of the current
formulation is demonstrated in Section 7 by analyzing the eigenvalues of the discretized system.
Section 8 contains the conclusions.

II. Integral representation of acoustic waves in the presence of a uniform
mean flow

The current problem is considered in the context of solving the wave equation in a moving medium
exterior of certain specified surface S, such as the scattering of sound field by an object as shown
in Figure 1. Acoustic waves are assumed to be disturbances of small amplitudes. Linear acoustic
problems are frequently formulated using a velocity potential function φ(r, t) where the acoustic
velocity u and pressure p are related to φ as follows:

u = ∇φ, p = −ρ0

(
∂φ

∂t
+U · ∇φ

)
(1)

where ρ0 is the mean density. With a constant mean flow U , the acoustic disturbances are governed
by the convective wave equation.25 In the present study, we consider the solution of the following
equation for the velocity potential:(

∂

∂t
+U · ∇

)2

φ− c2∇2φ = q(r, t) (2)

with homogeneous initial conditions

φ(r, 0) =
∂φ

∂t
(r, 0) = 0, t = 0 (3)

In the above, c is the speed of sound, U is the constant mean velocity, and q(r, t) represents the
known acoustic sources. Furthermore, in addition to the radiation condition at the far field, (2)
and (3) are to be supplemented with boundary conditions on the scattering surface S. The suitable
boundary conditions to be applied on solid surfaces will be discussed in Section 3.

U

n

V

Sources S

Figure 1. A schematic showing the scattering body and mean flow. Scattering surface is denoted by
S and the solution domain exterior of S is denoted by V . The surface normal vector n is taken to be
inward toward the interior of the body.
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It is well-known that the convective wave equation (2) and the initial condition (3) as well as the
boundary conditions can be reformulated into an integral equation. In the literature, the integral
representation of sound waves in a moving flow is often derived by making use of generalized
functions in a setting of moving bodies in an otherwise undisturbed medium.4,7, 8, 20,23,26 Here,
we present a derivation using a free-space Green’s function G̃(r, t; r′, t′) that, for convenience of
discussion, is defined as follows:(

∂

∂t
+U · ∇

)2

G̃− c2∇2G̃ = δ(r − r′)δ(t− t′) (4)

with initial conditions

G̃(r, t; r′, t′) =
∂G̃

∂t
(r, t; r′, t′) = 0, t > t′. (5)

Note that the time domain Green’s function G̃(r, t; r′, t′) defined above is nonzero for t ∈ (−∞, t′].
The solution to (4) and (5) is well-known (see, e.g., [4, 10, 25]) and, for a mean flow of a general
direction, can be written as

G̃(r, t; r′, t′) =
G0

4πc2
δ

(
t′ − t+ β · (r′ − r)− R̄

cα2

)
(6)

where

G0 =
1

R̄(r, r′)
, and R̄(r, r′) =

√
[M · (r − r′)]2 + α2|r − r′|2 (7)

in which

M =
U

c
, α =

√
1−M2, β =

U

c2 − U2
=

U

c2α2
=
M

cα2
, U = |U |, M = |M | (8)

By an operation of G̃×(2) −φ×(4) and by integrating over the volume V exterior of the scattering
surface S for space and an interval [0−, t′+] for time t, it is straight-forward to show that we will
get

ˆ t′+

0−

ˆ
V

{
∂

∂t

[
G̃

(
∂φ

∂t
+U · ∇φ

)
− φ

(
∂G̃

∂t
+U · ∇G̃

)]
+∇ ·

[(
G̃

(
∂φ

∂t
+U · ∇φ

)
− φ

(
∂G̃

∂t
+U · ∇G̃

))
U

]

− c2∇ ·
[
G̃∇φ− φ∇G̃

]}
drdt =

ˆ t′+

0−

ˆ
V

[
G̃q(r, t)− φ(r, t)δ(r − r′)δ(t− t′)

]
drdt

Integration of the first term in the above will be zero by initial conditions thus defined for φ and
G̃. Then, upon using the divergence theorem and the condition at infinity, we get an expression for
pressure φ at an arbitrary point r′ in V and time t′ as follows:
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φ(r′, t′) =

ˆ t′+

0−

ˆ
V
G̃q(r, t)drdt+ c2

ˆ t′+

0−

ˆ
S

(G̃
∂φ

∂n
− φ∂G̃

∂n
)drsdt

−c
ˆ t′+

0−

ˆ
S

[
G̃

(
∂φ

∂t
+U · ∇φ

)
− φ

(
∂G̃

∂t
+U · ∇G̃

)]
Mndrsdt (9)

where rs denotes points on surface S, and

Mn = n ·M = n ·U/c

is the normal component of the mean velocity Mach number on surface point rs. Here, the unit
normal vector n is assumed to be outward from the solution domain. For the exterior scattering
problem considered in the present study, the normal vector is then the one that is inward to the
body as noted in Figure 1.
For convenience of discussion, we define a modified normal derivative (denoted by an overbar) as

∂

∂n̄
=

∂

∂n
−Mn(M · ∇) (10)

Then, equation (9) can be written as

φ(r′, t′) =

ˆ t′+

0

ˆ
V
G̃q(r, t)drdt+c2

ˆ t′+

0

ˆ
S

(G̃
∂φ

∂n̄
−φ∂G̃

∂n̄
)drsdt−c

ˆ t′+

0

ˆ
S

[
G̃
∂φ

∂t
− φ∂G̃

∂t

]
Mndrsdt

(11)
Furthermore, if we introduce a combined normal derivative (denoted by a tilde) as

∂

∂ñ
=

∂

∂n
− Mn

c

(
∂

∂t
+U · ∇

)
=

∂

∂n̄
− Mn

c

∂

∂t
(12)

we get another expression:

φ(r′, t′) =

ˆ t′+

0−

ˆ
V
G̃q(r, t)drdt+ c2

ˆ t′+

0−

ˆ
S

(G̃
∂φ

∂ñ
− φ∂G̃

∂ñ
)drsdt (13)

Equation (9), (11) or (13) is the Kirchhoff integral representation of the acoustic field in the presence
of a uniform mean flow. The integral relation can be further expressed as the integration of retarded
values by utilizing G̃ as given in (6). In particular, note that we have

∂G̃

∂ñ
=

1

4πc2

∂G0

∂n̄

[
δ

(
t′ − t+ β · (r′ − r)− R̄

cα2

)
+

R̄

cα2
δ′
(
t′ − t+ β · (r′ − r)− R̄

cα2

)]
(14)

where G0 and R̄ are those defined in (7). Then equation (13) can be written as

φ(r′, t′) =
1

4πc2

ˆ
Vs

1

R̄
q(r, t′R)dr +

1

4π

ˆ
S

[
G0

∂φ

∂ñ
(rs, t

′
R)− ∂G0

∂n̄

(
φ(rs, t

′
R) +

R̄

cα2

∂φ

∂t
(rs, t

′
R)

)]
drs

(15)
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where Vs denotes the region of acoustic sources and the retarded time for t′ is defined as

t′R = t′ + β · (r′ − r)− R̄

cα2
(16)

The modified normal derivative for G0 is found to be the following:

∂G0

∂n̄
= − 1

R̄2

∂R̄

∂n̄
= −α2n · (r − r′)

R̄3
(17)

Equation (15) relates the solution at point r′ and time t′ to the direct contribution from source
function q and a surface contribution involving the retarded values of φ and their normal derivatives.
As shown in [13], this form is equivalent to previous such formulations appearing in the literature,
e.g., in [23,26], where the relationship had been derived under the assumption of a mean flow that
is aligned with the x-axis.
When both φ(rs, t) and ∂φ

∂ñ(rs, t) on surface S are known, φ(r′, t′) at any field point r′ can be
computed by using (15). However, φ(rs, t) and ∂φ

∂ñ(rs, t) are not independent. They have to satisfy
the boundary integral equation formed when r′ is taken to be a boundary point r′s as we will discuss
next.

III. Time domain boundary integral equation for scattering with solid surfaces

A Boundary Integral Equation (BIE) is formed by taking the limit r′ → r′s in the integral relation
(15), where r′s is a point on the boundary. The integral in (15) involving ∂G0

∂n̄ is weakly-singular
and, by using equation (55) given in the Appendix (assuming r′s is a smooth boundary collocation
point), it can be shown that

lim
r′→r′s

ˆ
S

∂G0

∂n̄
(rs, r

′)φ(rs, t
′
R)drs =

ˆ
S

∂G0

∂n̄
(rs, r

′
s)φ(rs, t

′
R)drs − 2πφ(r′s, t

′) (18)

Applying this limit to (15), we get the following Time Domain Boundary Integral Equation (TD-
BIE):

2πφ(r′s, t
′)−
ˆ
S

(
G0

∂φ

∂ñ
(rs, t

′
R)− ∂G0

∂n̄

[
φ(rs, t

′
R) +

R̄

cα2

∂φ

∂t
(rs, t

′
R)

])
drs = Q(r′s, t

′) (19)

where Q(r′s, t
′) denotes the contribution from the external sources to the surface point r′s:

Q(r′s, t
′) =

1

c2

ˆ
Vs

1

R̄
q(r, t′R)dr (20)

For sound scattering problems, φ(r′s, t
′) on the scattering surface S is to be determined by (19) when

the boundary condition for φ on S is given. A customary boundary condition on rigid surfaces is
that the normal component of the acoustic velocity is zero, i.e., u · n = 0, which, considering (1),
leads to

n · ∇φ =
∂φ

∂n
(rs, t) = 0, rs ∈ S (21)

Indeed, in all the previous literature on wave scattering with a uniform mean flow (e.g., [5, 10,
13, 15, 19, 28, 30]), in both the frequency domain and the time domain, boundary conditions of
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type (21) have been assumed at solid wall boundaries. To implement such a boundary condition,
the combined normal derivative appearing in (19) would then be separated into the normal and
tangential components as

∂φ

∂ñ
=
(
1−M2

n

) ∂φ
∂n
−Mn

(
1

c

∂φ

∂t
+MT · ∇φ

)
(22)

where MT is the tangential component of the mean flow Mach number M .
In the present paper, however, we propose an alternative boundary condition to be used at solid
surfaces when solving TDBIE (19) in the presence of a uniform flow. The new boundary condition
is based on a consideration of the acoustic energy.
It can be shown that the convective wave equation (2) without the source term has an associated
energy equation:

∂E

∂t
+∇ · J = 0 (23)

where

E =
1

2
|∇φ|2 +

1

2c2

∣∣∣∣DφDt
∣∣∣∣2 − U · ∇φc2

Dφ

Dt
, J = −∂φ

∂t

(
∇φ− 1

c2

Dφ

Dt
U

)
,

D

Dt
=

∂

∂t
+U · ∇ (24)

Equation (23) can be validated directly by using the expressions defined in (24). When substituted
by the acoustic velocity and pressure defined in (1), ρ0E is the usual acoustic energy density in a
uniform flow.22,24,27

By (24), it is immediately clear that the energy flux at a surface of normal n is the following:

Jn = J · n = −∂φ
∂t

(
∂φ

∂n
− Mn

c

Dφ

Dt

)
= −∂φ

∂t

∂φ

∂ñ
(25)

Clearly, on a surface where the normal component of the mean velocity Mn is not zero, i.e., where
the surface is not aligned with the mean flow, application of boundary condition (21) will result in
nonzero energy flux, i.e., Jn 6= 0 and, consequently, cause the surface to be acting like an acoustic
energy source or sink according to (25). This will apparently lead to nonconservation of the total
acoustic energy.
Alternatively, the boundary condition on the solid surface may be defined by the requirement that
no energy flows into or out of the surface. By (25) and to ensure energy flux Jn = 0 on solid surfaces,
we propose that the boundary condition be modified such that the combined normal derivative of
φ, defined in (12), is zero:

∂φ

∂ñ
(rs, t) =

∂φ

∂n
− Mn

c

Dφ

Dt
= 0, rs ∈ S (26)

The total acoustic energy will be conserved under this new condition.
Now by applying boundary condition (26) to (19), a new formulation of the TDBIE for φ(r′s, t

′)
with solid surfaces is found as follows:

2πφ(r′s, t
′) +

ˆ
S

∂G0

∂n̄

(
φ(rs, t

′
R) +

R̄

cα2

∂φ

∂t
(rs, t

′
R)

)
drs = Q(r′s, t

′) (27)
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Equation (27) is one of the main results of the present paper. It is a new formulation for the time
domain boundary integral equation for acoustic scattering by rigid surfaces in a constant mean flow.
It is different from those in the literature in several aspects. First, the boundary condition used for
(27) is one that is based on the acoustic energy flux consideration instead of the acoustic normal
velocity. The two approaches differ on the part of the boundary where the mean flow itself does
not satisfy the slip boundary condition. Second, the new equation is much simpler than those of
the previous formulations in which tangential derivatives of the solution on the scattering surface
are required to be kept as part of the integral equation. Of course, boundary condition (26) reduces
to the usual one (21) wherever the mean flow does satisfy the solid wall boundary condition, i.e.,
Mn = 0.

IV. Burton-Miller type reformulation in time domain with a mean flow

Direct solution of boundary integral equations for exterior scattering problems, however, is known
to suffer numerical instabilities. The instability is generally attributed to the existence of resonance
frequencies for the interior domain.1,2, 6, 30 In time domain solutions, the instability is more easily
triggered as a continuous spectrum of frequencies within the numerical resolution are present in the
computation. This instability is one of the major difficulties that have hindered the use of time
domain integral equations. Recently, Burton-Miller type reformulation that has been widely used
for exterior scattering problems in the frequency domain has shown to be effective in eliminating the
instability in the time domain as well.1,6, 29 In [2], a theoretical justification has been provided for
the extension of the Burton-Miller formulation to the time domain for the wave equation without
flow. In this section, we propose the Burton-Miller reformulation for the TDBIE (27). An analysis
on its stability similar to that in [2] is given in the next section.
For convenience of discussion, we define the following time domain double layer potential:

D[φ](r′, t′) =

ˆ t′+

0

ˆ
S

∂G̃

∂ñ
(rs, t; r

′, t′)φ(rs, t)drsdt =

ˆ
S

∂G0

∂n̄
(rs, r

′)

(
φ(rs, t

′
R) +

R̄

cα2

∂φ

∂t
(rs, t

′
R)

)
drs

(28)
The Burton-Miller type reformulation is carried out by applying a linear combination of the time
and certain normal derivatives to the time domain integral equation. In earlier studies of the
Burton-Miller formulation for scattering with a flow, the modified normal derivative (10) had been
used.13,30 Here, we propose that the normal derivative to be used for the Burton-Miller formulation
be the combined normal derivative defined in (17). Specifically, the Burton-Miller reformulation is
obtained by applying the following derivative operator to the boundary integral equation at surface
points r′s:

ã
∂

∂t′
+ b̃c

∂

∂ñ′
(29)

where ã and b̃ are constants and c is the speed of sound, namely,

ã
∂

∂t′

(
2πφ(r′s, t

′)+D[φ](r′s, t
′)
)

+b̃c
∂

∂ñ′

(
4πφ(r′, t′) +D[φ](r′, t′)

)∣∣∣∣
r′=r′s

= ã
∂Q

∂t′
(r′s, t

′)+b̃c
∂Q

∂ñ′
(r′s, t

′)

(30)
Applying again the solid surface boundary condition (26), equation (30) is expanded to be the
following:
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ã

[
2π
∂φ

∂t
(r′s, t

′) +

ˆ
S

∂G0

∂n̄
(rs, r

′)

(
∂φ

∂t
(rs, t

′
R) +

R̄

cα2

∂φ

∂t2
(rs, t

′
R)

)
drs

]

+b̃c

[
∂

∂ñ′

ˆ
S

∂G0

∂n̄
(rs, r

′)

(
φ(rs, t

′
R) +

R̄

cα2

∂φ

∂t
(rs, t

′
R)

)
drs

]
r′=r′s

= ã
∂Q

∂t′
(r′s, t

′) + b̃c
∂Q

∂ñ′
(r′s, t

′)

(31)

Note that an integral with a kernel ∂2G0
∂n̄′∂n̄(rs, r

′
s) is hyper-singular when rs coincides with rs′. In

particular, we have

∂2G0

∂n̄′∂n̄
(rs, r

′
s) =

∂

∂n̄′

[
−α2n · (rs − r′s)

R̄3

]
=
α2

R̄3
[n · n′ −Mn′Mn] + 3α4 [n · (rs − r′s)] [n′ · (r′s − rs)]

R̄5
(32)

Thus, ∂2G0
∂n̄′∂n̄(rs, r

′
s) is of order O(1/|rs − r′s|3) as rs → r′s.

We consider the following regularization process for the hyper-singular integral in (31) that adds
and subtracts a term involving the value at the collocation point φ(r′s, t

′):

∂

∂ñ′

[ˆ
S

∂G0

∂n̄
(rs, r

′
s)

(
φ(rs, t

′
R) +

R̄

cα2

∂φ

∂t
(rs, t

′
R)

)
drs

]

=
∂

∂ñ′

[ˆ
S

∂G0

∂n̄
(rs, r

′
s)

(
φ(rs, t

′
R)− φ(r′s, t

′) +
R̄

cα2

∂φ

∂t
(rs, t

′
R)

)
drs

]
+φ(r′s, t

′)
∂

∂ñ′

[ˆ
S

∂G0

∂n̄
(rs, r

′
s)drs

]
(33)

The first integral is now integrable by Cauchy Principal Value (Appendix B) and the second integral
is zero according to (55) given in the Appendix A. Upon carrying out the derivatives inside the first
integral shown above, we get the following Burton-Miller reformulation of the time domain boundary
integral equation (BM-TDBIE):

2πã
∂φ(r′s, t

′)

∂t
+ ã

ˆ
S

∂G0

∂n̄

(
∂φ

∂t
(rs, t

′
R) +

R̄

cα2

∂2φ

∂t2
(rs, t

′
R)

)
drs−

b̃

cα4

ˆ
S
R̄3∂G0

∂n̄′
∂G0

∂n̄

∂2φ

∂t2
(rs, t

′
R)drs

+b̃c

ˆ
S

∂2G0

∂n̄′∂n̄

(
φ(rs, t

′
R)− φ(r′s, t

′) +
R̄

cα2

∂φ

∂t
(rs, t

′
R)

)
drs = ã

∂Q

∂t′
(r′s, t

′) + b̃c
∂Q

∂ñ′
(r′s, t

′) (34)

The proper values for the coefficients ã and b̃ will be given in the next section where stability of
(34) will be discussed.

V. Stability of the time domain Burton-Miller formulation in the presence of
a mean flow

Following closely the work in [2] for the case without flow, we demonstrate in this section that
the Burton-Miller type reformulation presented in the previous section eliminates the nontrivial
solutions of the homogeneous integral equation in the case with a flow as well.
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Suppose that there is a nontrivial solution φ0(rs, t) to the homogeneous formulation (34). We will
show in what follows that such a solution is not possible. Consider the double layer potential (28)
extended to domains both exterior and interior of surface S:

D[φ0](r′, t′) =

ˆ
S

∂G0

∂n̄
(rs, r

′)

(
φ0(rs, t

′
R) +

R̄

cα2

∂φ0

∂t
(rs, t

′
R)

)
drs ≡


w+, r′ ∈ V, exterior of S

w0, r′ = r′s on S

w−, r′ ∈ V −, interior of S

We note that w+ and w− satisfy the homogeneous convective wave equation in the exterior and
interior domains of S, respectively. It can also be shown that

lim
r′→r′s

w+ = w0 − 2πφ0(r′s, t
′) (35)

lim
r′→r′s

w− = w0 + 2πφ0(r′s, t
′) (36)

lim
r′→r′s

∂w+

∂ñ′
= lim

r′→r′s

∂w−

∂ñ′
(37)

Equations (35) and (36) can be found by using the limits given in (55) in the Appendix, and equation
(37) follows after an application of the regularization process (33) to both sides of the equation.
Now since φ0(rs, t) satisfies the homogeneous Burton-Miller formulation (30), we have, at r′ = r′s,

ã
∂

∂t′
(2πφ0 + w0) + b̃c

∂

∂ñ′
(
4πφ0 + w+

)∣∣∣∣
r′s

= 0

By the jump conditions (35)-(37) as well as the boundary condition (26), the above yields

ã
∂w−

∂t′
+ b̃c

∂w−

∂ñ′
= 0 (38)

On the other hand, since w− satisfies the convective wave equation and by the energy equation (23)
of the convective wave equation, we have

∂

∂t

ˆ
V −

[
1

2
|∇w−|2 +

1

2c2

∣∣∣∣Dw−Dt

∣∣∣∣2 − U · ∇w−c2

Dw−

Dt

]
dr =

ˆ
V −
∇ ·
[
∂w−

∂t

(
∇w− − 1

c2

Dw−

Dt
U

)]
dr

which, with an application of the divergence theorem, becomes

ˆ
V −

[
1

2
|∇w−|2 +

1

2c2

∣∣∣∣Dw−Dt

∣∣∣∣2 − U · ∇w−c2

Dw−

Dt

]
dr = −

ˆ t+

0

ˆ
S

∂w−

∂t

∂w−

∂ñ
drsdt (39)

where V − represents the volume interior of S. The minus sign on the right hand side has been
added due to the fact that the normal derivative used in (39) is still the one that is inward of the
body surface. Note that, for subsonic flows where |U | < c, the left hand side of (39) is nonnegative:
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1

2
|∇w−|2 +

1

2c2

∣∣∣∣Dw−Dt

∣∣∣∣2 − U · ∇w−

c2
Dw−

Dt
=

1

2

(
|∇w−| − 1

c

∣∣∣∣Dw−Dt

∣∣∣∣)2

+
1

c
|∇w−|

∣∣∣∣Dw−Dt

∣∣∣∣− U · ∇w−

c

Dw−

Dt
≥ 0

On the other hand, using (38), the right hand side of (39) will be nonpositive:

−
ˆ t+

0

ˆ
S

∂w−

∂t

∂w−

∂ñ
drs =

1

c2

ˆ t+

0

ˆ
S

ã

b̃c

∣∣∣∣∂w−∂t
∣∣∣∣2 drs ≤ 0

provided

ã

b̃
< 0 (40)

The above implies that w− has to be a trivial solution, i.e., w− ≡ 0 under the condition (40). A
simple choice for ã and b̃ is ã = −b̃ = 1.

VI. Time Domain Boundary Element Method

In this section, we describe a numerical solution of (34) by the Time Domain Boundary Element
Method (TDBEM) and demonstrate numerical stability of the new formulation.
Let surface S be discretized by surface elements Ej , j = 1, 2, ..., Ne, where Ne is the total number
of elements, and the time be discretized by tn = n∆t, where ∆t is the time step. The time domain
numerical solution on the surface can be expanded as

φ(rs, t) =

Nt∑
n=0

Ne∑
j=1

unj ϕj(rs)ψn(t) (41)

where ϕj(rs) is the surface basis function for element Ej and ψn(t) is the temporal basis function
for time node tn. Here Nt is the total number of time steps. For simplicity, we consider only
constant elements where collocation node rj is located at the center of the element and the nodal
basis function is

ϕj(rs) =

1, rs on element Ej that contains node rj
0, otherwise

(42)

The temporal basis function is taken to be the third-order shifted Lagrange basis polynomial that
is commonly used for time domain boundary element methods:14,18

ψn(t) = Ψ

(
t− tn

∆t

)
(43)

where

Ψ(τ) =



1 + 11
6 τ + τ2 + 1

6τ
3 −1 < τ ≤ 0

1 + 1
2τ − τ

2 − 1
2τ

3 0 < τ ≤ 1

1− 1
2τ − τ

2 + 1
2τ

3 1 < τ ≤ 2

1− 11
6 τ + τ2 − 1

6τ
3 2 < τ ≤ 3

0 other

(44)
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For example, at a point rs on element Ej and at an off-nodal time t = tn − η∆t, 0 ≤ η < 1, the
value for φ(rs, t) is found by

φ(rs, t) = ϕj(rs)
[
unj Ψ(−η) + un−1

j Ψ(1− η) + un−2
j Ψ(2− η) + un−3

j Ψ(3− η)
]

(45)

With nodal spatial and temporal basis functions defined above, the expansion coefficient unj in (41)
represents the value of φ at the collocation node rj on element Ej at time level tn. By substituting
expansion (41) into boundary integral equation (34) and evaluating the equation at collocation
points ri of all elements and at time level tn, a March-On-in-Time scheme (MOT) is obtained that
can be expressed in a matrix form as

B0u
n = qn −B1u

n−1 −B2u
n−2 − · · ·BJu

n−J (46)

where uk denotes a vector that contains all unknowns
{
ukj , j = 1, 2, ..., Ne

}
at time level tk. The

nonzero entries for matrices Bk, k = 0, 1, 2, ..., J , in (46) are:

{Bk}ij = 2πãδijψ
′
n−k(tn) + ã

ˆ
Ej

∂G0

∂n̄

(
ψ′n−k(t

n
R) +

R̄

cα2
ψ′′n−k(t

n
R)

)
drs + b̃cδijδk0Di

+b̃c

ˆ
Ej

∂2G0

∂n̄′∂n̄

(
ψn−k(t

n
R)− δijψn−k(tn) +

R̄

cα2
ψ′n−k(t

n
R)

)
drs +

b̃

cα4

ˆ
Ej

R̄3∂G0

∂n̄′
∂G0

∂n̄
ψ′′n−k(t

n
R)drs

(47)
for i, j = 1, 2, ..., Ne, where δij and δk0 are Kronecker delta functions and a prime in the above
denotes the derivative with respect to time and

tnR = tn + β · (ri − rs)−
R̄(rs, ri)

cα2
, Di = −

ˆ
S−Ei

∂2G0

∂n̄′∂n̄
(rs, ri)drs (48)

It is easy to see that the entry {Bk}ij represents contributions to the value at node ri from the nodal
value of element Ej of time level tn−k. The integrals in (47) are to be evaluated using high-order
quadrature on each element. For the computational results reported in this paper, each element is
mapped into a standard element of [−1, 1]× [−1, 1] and Legendre-Gauss quadrature rule of degree
6 is used for integration in each dimension. Integration on the singular elements when i = j is
detailed in Appendix B.
The index J in (46) denotes the maximum time history of the solution required for (46) and is
dependent on the length of the scattering surface and the mean flow as

J =
L̄

cα2∆t
+ 3, L̄ = max

rs,r′s∈S

[
−M · (r′s − rs) + R̄(rs, r

′
s)
]

(49)

Due to the limited temporal stencil width shown in (44) and (45), the B matrices are sparse.
In particular, we note that matrix B0 in (46) is a very sparse matrix and represents interactions
within the same element or between nearby nodes at the same time level tn. B0 is also found to be
diagonally dominant. Solutions for un in (46) can be found efficiently by an iterative method, such
as the Jacobi iterative method, with rapid convergence.9,18
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VII. Stability and eigenvalue analysis of the new integral equation

As mentioned in previous sections, direct numerical solution of the time domain boundary integral
equation (27) is prone to numerical instabilities. In Figure 2, we first show an example of scattering
by a parabolic wing in a mean flow of Mach number 0.5, M = (0.5, 0, 0), to demonstrate the elim-
ination of numerical instability by the Burton-Miller reformulation of TDBIE (27). The geometry
of the scattering surface is a convex parabolic wing and is defined as follows:

z = 0.1Lx(1− x2/L2
x), −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly (50)

where Lx = Ly = 0.5. The scattering surface is discretized by 2316 quadrilateral elements as shown
in Figure 2. The source function is a broadband point source defined as the following:

q(r, t) = e−σt
2
δ(r − r0) (51)

where r0 = (0, 0, 1) and σ = 1.42/(6∆t)2. The time history of the solution on a surface collocation
point is plotted in Figure 2 for the cases without and with Burton-Miller reformulation. The top
figure shows the result obtained by directly solving the TDBIE (27). It is seen that the solution
behaves well initially but eventually becomes unstable. On the other hand, the solution obtained
by the BM-TDBIE (34), shown in the bottom figure, remains stable.
To further study the stability of the MOT scheme (46), we conduct a numerical eigenvalue study of
the discretized system of equations.3 We look for solutions of the form

un = λne0 (52)

to the corresponding homogeneous system of (46). By substituting (52) into (46), we obtain a
polynomial eigenvalue problem

[
B0λ

J +B1λ
J−1 +B2λ

J−2 + · · ·+BJ−1λ+BJ

]
e0 = 0 (53)

which can be cast into a generalized eigenvalue problem as follows:



−B1 −B2 · · · · · · −BJ−1 −BJ

I 0 · · · · · · 0 0

0 I · · · · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 0 0

0 0 · · · · · · I 0





eJ−1

eJ−2

·
·
e1

e0


= λ



B0 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · I 0

0 0 0 · · · 0 I





eJ−1

eJ−2

·
·
e1

e0


(54)

where ej = λje0. Numerical scheme (46) is stable if |λ| ≤ 1 for all eigenvalues of (54).
Eigenvalue analyses of scattering by two geometric shapes are presented in Table 1. One of the
geometries is the parabolic wing as described previously in (50). The other is a sphere of radius
0.5. The surface of the sphere is first discretized by 512 unstructured triangular elements each of
which is then subdivided into three quadrilateral surface elements resulting in a total of 1536 surface
elements. The mean flow Mach number varies from 0 to 0.9. A total of eight cases are considered
in Table 1.
Eigenvalues of the generalized eigenvalue problem (54) can be found via a sparse eigenvalue solver
available in MATLAB and Python, or by a matrix power iteration method detailed in Appendix C.
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Y
X

Z

Figure 2. Time history of numerical solution on a surface collocation point, showing the elimination
of instability by Burton-Miller reformulation of TDBIE. M = (0.5, 0, 0), ∆t = 0.02. Top: solution of
(27) without Burton-Miller reformulation; bottom: solution by BM-TDBIE (34).
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The values of the largest eigenvalue for the eight cases are listed in Table 1. For the Burton-Miller
formulation BM-TDBIE (34), all eigenvalues are no greater than unity and stability is observed. In
contrast, direct solution of the equation (27) results in eigenvalues greater than unity in all but two
of the eight cases studied, indicating that equation (27) without Burton-Miller reformulation can
lead to unstable solutions.

Table 1. Maximum eigenvalue, |λ|max, computed by (54) for scattering by a parabolic wing and a
sphere, for cases with and without Burton-Miller (B-M) reformulation. Ne is the total number of
elements and M is the mean flow Mach number.

Parabolic Wing Sphere
|λ|max |λ|max

Ne M with B-M without B-M Ne M with B-M without B-M
Eq. (34) Eq. (27) Eq. (34) Eq. (27)

2316 0.0 1.000000 1.095949 1536 0.0 1.000000 1.007840
2316 0.3 1.000000 1.160628 1536 0.3 1.000000 1.000000
2316 0.6 1.000000 1.129116 1536 0.6 1.000000 0.999968
2316 0.9 1.000000 1.582909 1536 0.9 1.000000 1.003901

VIII. Conclusions

In this paper, we have considered the boundary condition to be used in time domain boundary inte-
gral equation analysis of acoustic scattering by solid bodies under a constant mean flow assumption.
After an examination of the energy equation associated with the convective wave equation, it is pro-
posed that the boundary condition be defined by the requirement that the energy flux be zero at
solid boundaries. A new TDBIE is derived based on this new solid wall boundary condition. The
new formulation differs from those found in the literature on the part of the boundary where the
constant mean flow itself does not satisfy the solid surface boundary condition. In addition to
conserving the acoustic energy, another significant advantage of the new equation is that it is con-
siderably simpler than previous formulations. In particular, tangential derivatives of the solution on
the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical
implementation. To stabilize the TDBIE, Burton-Miller reformulation is also derived. Numerical
solutions and eigenvalue analysis are presented that demonstrate stability of the new formulation.
Naturally, from a physical point of view, the null acoustic energy flux condition at rigid surfaces
should be equivalent to, or a direct consequence of, the condition that the normal acoustic velocity
becomes zero on rigid surfaces. The fact that the two now differ in the formulation of the boundary
integral equation for scattering with flow is due to the inconsistency on the part of the underlying
mean flow itself when the constant flow simplification is made. Thus, boundary integral equation
approaches with a constant mean flow would be applicable only to problems where such a sim-
plification is acceptable or justified, such as in scattering with flow over slender bodies. From a
computational point of view, however, the current formulation based on the energy flux condition is
significantly simpler than those based on the normal velocity condition. As such, as a result of the
present analysis, the enforcement of normal acoustic velocity being zero on boundary points where
the mean flow itself does not satisfy such a condition, and the computational complications it brings
in with the separation of normal and tangential derivatives of the solution, become unnecessary.
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Appendix

A. Limit of weakly-singular integral

By equations (17) and (32), it is easy show that the modified normal derivative ∂G0
∂n̄ (rs, r

′
s) and

∂2G0
∂n̄′∂n̄(rs, r

′
s) have a singularity of order O(1/|rs − r′s|) and O(1/|rs − r′s)|3), respectively, which

makes their surface integrals weakly-singular and hyper-singular, respectively. In this appendix, we
state some useful results.
For surface integrals involving ∂G0

∂n̄ , we have

1

4π

ˆ
S

∂G0

∂n̄
(rs, r

′)drs =


0 r′ ∈ V, exterior of S
1
2 r′ = r′s ∈ S

1 r′ ∈ V −, interior of S

(55)

The first and third equations in (55) can be obtained by the fact that any constant can be a solution
to the homogeneous convective wave equation with homogeneous normal derivative on the boundary
for the interior domain V − enclosed by S. By substituting p = 1 to equation (15) and noting the
choice of the normal direction and the placement of r′, the first and third equation in (55) follow
immediately.
The second integral in (55) becomes weakly singular when r′ approaches a point on surface S. This
particular limit has been studied previous in the literature for a mean flow that is aligned with the
x-coordinate.21,26 Here, we show the calculation for a general mean flow. Assuming r′s is a smooth
point on S, consider modifying surface S by a spherical surface of radius ε and centered at r′s as
shown in Figure 3. The surface is assumed to be smooth at r′s. If we denote the small hemispherical
surface as Sε, we have

lim
r′→r′s

ˆ
S

∂G0

∂n̄
(rs, r

′)drs = lim
r′→r′s

ˆ
S−Sε

∂G0

∂n̄
(rs, r

′)drs + lim
r′→r′s

ˆ
Sε

∂G0

∂n̄
(rs, r

′)drs (56)

Note that, for the surface integral on Sε, using (10), we have

∂G0

∂n̄
= −α2n1(xs − x′s) + n2(ys − y′s) + n3(zs − z′s)

R̄3
= −α2 ε

R̄3

By the symmetry of R̄ with respect to hemispheres Sε and S′ε, the complementary hemisphere of Sε,
and by using a local spherical coordinate system centered at r′s and its local z direction coincides
with mean flow M , namely xs − x′s = ε sin ν cos θ, ys − y′s = ε sin ν sin θ, zs − z′s = ε cos ν, we have

lim
r′→r′s

ˆ
Sε

∂G0

∂n̄
drs = −α2

ˆ
Sε

ε

R̄3
drs = −α

2

2

ˆ
Sε+S′ε

ε

R̄3
drs = −α

2

2

ˆ 2π

0

ˆ π

0

ε3 sin ν(
ε2 cos2 ν + ε2α2 sin2 ν

)3/2dνdθ
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= −πα2

ˆ 1

−1

1

(α2 + (1− α2)χ2)3/2
dχ = −2π

The last integral above can be found by direct integration. The second equation in (55) follows as
ε→ 0 and by noting that, for r′ ∈ V , the limit on the left hand side of (56) is zero.

S

r’s

n

V

V
−

r’

Sε

Figure 3. A schematic diagram for a hemisphere that caps a surface point r′s. Note that the normal
vector is in the direction outward from the region of solution and into the body.

B. Evaluation of hyper-singular integral

We consider the numerical evaluation of the regularized integral involving the double normal deriva-
tive of G0 in (34). Note that as rs → r′s,

φ(rs, t
′
R)−φ(r′s, t

′)+
R̄

cα2

∂φ

∂t
(rs, t

′
R) = ∇φ(r′s, t

′)·(rs−r′s)+β·(r′s−rs)
∂φ

∂t
(r′s, t

′)+O(|rs−r′s|2) (57)

Let a surface element Ej be mapped to a local coordinate (ξ, η) ∈ [−1, 1]× [−1, 1], which is then in
turn converted into a local polar coordinate (r, θ) centered at the collocation point r′s. Denote the
integrand for the integral in (r, θ) as

F (r, θ) =

(
∂2G0

∂n̄′∂n̄

)(
φ(rs, t

′
R)− φ(r′s, t

′) +
R̄

cα2

∂φ

∂t
(rs, t

′
R)

)
|rξ × rη| (58)

By (57), F (r, θ) is of order O(1/r2) as r → 0. Let

lim
r→0

r2F (r, θ) = G(θ) (59)

It is easy to show that
´ 2π

0 G(θ)dθ = 0. Then we have the following for the integral on surface
element Ej :

lim
ε→0

ˆ 2π

0

ˆ r(θ)

ε
F (r, θ)rdrdθ = lim

ε→0

ˆ 2π

0

ˆ r(θ)

ε
[
r2F (r, θ)−G(θ)

r
+
G(θ)

r
]drdθ

=

ˆ 2π

0

ˆ r(θ)

0

r2F (r, θ)−G(θ)

r
drdθ + lim

ε→0

ˆ 2π

0
G(θ)[ln r(θ)− ln ε]dθ

=

ˆ 2π

0

ˆ r(θ)

0

r2F (r, θ)−G(θ)

r
drdθ +

ˆ 2π

0
G(θ) ln r(θ)dθ

The final integrals can be evaluated using high-order numerical quadrature.
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C. Eigenvalue by matrix power iteration method

We describe a matrix power iteration method for finding the largest eigenvalue of (54). Let

A =



−B−1
0 B1 −B−1

0 B2 · · · · · · −B−1
0 BJ−1 −B−1

0 BJ

I 0 · · · · · · 0 0

0 I · · · · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 0 0

0 0 · · · · · · I 0


Then, the power iteration method proceeds as follows:9

given an arbitrary unit vector e(0), and for k = 1, 2, ..., compute

v(k) = Ae(k−1) (60)

e(k) =
v(k)

||v(k)||2
(61)

and eigenvalue

λ(k) =
[
e(k)

]T
Ae(k) =

[
e(k)

]T
v(k+1) (62)

The iteration is stopped when
∣∣λ(k) − λ(k−1)

∣∣ / ∣∣λ(k)
∣∣ < ε, where ε is the tolerance and set to be

10−12. When the iteration is convergent, it converges to the largest eigenvalue of A.
In particular, if we denote

e(k) =



e
(k)
J−1

e
(k)
J−2

·
·
e

(k)
1

e
(k)
0


, v(k) =



v
(k)
J−1

v
(k)
J−2

·
·
v

(k)
1

v
(k)
0


(63)

then, equation (60) can also be computed through the following relations that save memory and
storage:

v
(k)
J−1 = −B−10

[
B1e

(k−1)
J−1 +B2e

(k−1)
J−2 + · · ·+BJ−1e

(k−1)
1 +BJe

(k−1)
0

]
,v

(k)
J−2 = e

(k−1)
J−1 , · · · ,v(k)0 = e

(k−1)
1

(64)

We note that the iterative step shown in (64) is the same as the MOT iteration (46) without the
source term. Therefore, it can also carried out using the same computational scheme for (46).
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