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Guide—Advanced Exploration Systems (AES) 
 

Rigoberto Roche and Mary Jo Shalkhauser 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Summary 
The Space Telecommunications Radio System (STRS) provides a common, consistent framework for 

software defined radios (SDRs) to abstract the application software from the radio platform hardware. 
The STRS standard aims to reduce the cost and risk of using complex, configurable, and reprogrammable 
radio systems across NASA missions. To promote the use of the STRS architecture for future NASA 
advanced exploration missions, NASA Glenn Research Center developed an STRS-compliant SDR on a 
radio platform used by the Advanced Exploration System program at NASA Johnson Space Center in 
their Integrated Power, Avionics, and Software (iPAS) laboratory. This document provides information to 
program, operate, and configure the iPAS STRS radio on the Reconfigurable, Intelligently-Adaptive 
Communication System (RIACS) platform. 

1.0 Introduction 
The Integrated Power, Avionics, and Software (iPAS) Space and Telecommunications Radio System 

(STRS) radio is being implemented on the Reconfigurable, Intelligently-Adaptive Communication 
System (RIACS) platform, currently being used for radio development at NASA Johnson Space Center. 
The platform consists of a Xilinx® Virtex®-6 ML605 Evaluation Kit, an Analog Devices AD–
FMCOMMS1–EBZ radiofrequency (RF) front-end board, and an Axiomtek™ eBOX620–110–FL 
embedded personal computer (PC) running the Ubuntu® 12.04 LTS operating system (OS). Figure 1 
shows the RIACS platform hardware. 

 

1.1 System Overview 

The goal of this development is to implement the STRS standard for software defined radios (SDRs) 
on the RIACS platform at Johnson. At the conclusion of the development, the software and hardware 
description language (HDL) code will be delivered to Johnson for their use in their iPAS testbed and for 
development of their own STRS waveforms on the RIACS platform. 

1.2 Document Overview 

The purpose of this document is to describe how to configure and operate the iPAS STRS radio 
platform with its delivered test waveform. Throughout this document, commands are always shown in 
italics. 

2.0 Design Overview 
This section presents a design overview of the iPAS STRS radio components. 
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Figure 1.—Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform. 

ADC, analog-to-digital converter; DAC, digital-to-analog converter; FPGA, field-programmable 
gate array; RF, radiofrequency; Rx, receive; Tx, transmit; UDP, User Datagram Protocol. 

2.1 General Purpose Module (GPM) 

The GPM is the implementation of the STRS command infrastructure on the iPAS radio. It houses the 
operating environment (OE) and presents a communication conduit for commands and data to and from 
the signal processing module (SPM). The GPM is where the general purpose processor (GPP) hardware is 
contained and accessed by the OS running the STRS project files. 

The GPP hardware (eBOX620–110–FL) is used under the STRS architecture. This architecture can 
perform transmit-side (Tx-side) streaming to the SPM, receive-side (Rx-side) streaming from the SPM, 
command generation, command transmission to the SPM, and command processing of responses from the 
SPM, all simultaneously. The GPP also controls the Ethernet communication protocol (configured in 
Transmission Control Protocol (TCP)/Internet Protocol (IP)v4), scheduler and dynamic memory 
allocation of the hardware, and systemic pointing for STRS command and control interfaces. 

This architecture handles the use of specific waveform characteristics that are commanded in the 
iPAS test waveform. These parameters include a pseudorandom bit sequence (PRBS) generator in the Tx 
side for parallel streaming to the SPM, an in-phase (I) and quadrature (Q) channel data source for parallel 
streaming to the SPM, an Rx-side streaming bit error rate tester (BERT), and a plotting tool for a 
graphical representation of the incoming data. Additional features include commands to display the bit 
error rate (BER) from SPM BERT and GPM BERT. Debugging tools included in this software 
architecture allow the user to query status bits and display any issues indicated by such bits. Additional 
queries are possible to obtain the status of the first in first out (FIFO) buffer during Tx-side streaming and 
observation of automatic speed adjustments of Tx-side packet streaming. 
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2.2 Signal Processing Module (SPM) 
The purpose of the field-programmable gate array (FPGA) design is the implementation of the SPM 

functions of the STRS radio architecture in the iPAS RIACS platform. The FPGA design consists of two 
parts: the FPGA wrapper and the test waveform. The FPGA wrapper implements each platform interface 
as follows: 

   
(1) Ethernet communication to the embedded processor for commanding and data streaming 
(2) Digital-to-analog converter (DAC) and analog-to-digital converter (ADC) interface to the RF 

front-end board (AD–FMCOMMS1–EBZ) 
(3) RF front-end board (AD–FMCOMMS1–EBZ) control and configuration 
(4) FPGA clocking 

 

The test waveform does not fully implement all the signal processing functionality for a radio, but it 
exercises and demonstrates each interface in the FPGA wrapper. A future user of the platform for an 
STRS radio would use the FPGA wrapper and replace the test waveform with their own radio signal 
processing functions. 

The FPGA design is required to receive and process commands and provide command control and data 
to the test waveform. It must also receive and transmit streaming data from and to the embedded processor. 
The test waveform demonstrates each FPGA wrapper interface. To test Tx-side streaming, it can perform 
BER testing on Tx-side PRBS streaming data. It can also generate PRBS streaming data packets for an Rx-
side streaming data source. The test waveform generates sine and cosine waves for the I and Q inputs to the 
RF transceiver. Captured I and Q outputs of the RF transceiver can be streamed to the embedded processor 
where it can be plotted to demonstrate proper functionality of the RF board and its interfaces. 

2.3 Radiofrequency Module (RFM) 

The RF front-end board (AD–FMCOMMS1–EBZ) provides the analog and RF signal processing for 
the iPAS STRS radio. On the Tx side, the RF front-end board (AD–FMCOMMS1–EBZ) takes complex I 
and Q inputs (16 bits) into a high-speed DAC to create an analog signal. The DAC output signal is up-
converted to the desired RF by a Q modulator. On the Rx side, the received RF signal is demodulated 
using direct conversion to create I and Q analog signals. The analog signals are converted to digital data 
using a 14-bit ADC. 

2.4 Top-Level Design Description 

Figure 2 shows how the STRS standard is implemented on the RIACS platform. The SPM 
encompasses the FPGA design, which consists of the following: 

 

• The FPGA wrapper that implements all the interfaces to the FPGA and abstracts them from the 
waveform. 

• The waveform that is the FPGA implementation of the radio signal processing functions. 

2.5 Concept of Operation 

The flight computer (FC) graphical user interface (GUI) simulates the STRS commands that would 
originate from a typical FC. The GPM is implemented on the embedded PC (eBOX620–110–FL) and 
includes the STRS OE and waveform application software. The STRS OE communicates with the 
waveform application through standard STRS application programming interfaces (APIs) to control and 
configure the waveform. 
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Figure 2.—Space Telecommunications Radio System (STRS) implementation on Reconfigurable, Intelligently-

Adaptive Communication System (RIACS) platform. ADC, analog-to-digital converter; APIs, application 
programming interfaces; DAC, digital-to-analog converter; FPGA, field-programmable gate array; GUI, graphical 
user interface; HAL, hardware abstraction layer; PC, personal computer; RF, radiofrequency; Rx, receive; Tx, 
transmit; UDP, User Datagram Protocol. 

 
The SPM is implemented in the Xilinx® ML605 FPGA board. The FPGA consists of two parts: an 

FPGA wrapper and a test waveform. The FPGA wrapper abstracts the hardware interfaces from the 
waveform developer. The test waveform utilizes each of the hardware interfaces within the wrapper to 
demonstrate that the wrapper is correctly implemented. The GPM sends commands over an Ethernet port 
to the FPGA to control and configure the waveform. The GPM also streams packetized data to the FPGA 
and receives packetized streaming data from the FPGA over the same Ethernet port. 

The RF front-end board (AD–FMCOMMS1–EBZ) contains a DAC, up-converter, down-converter, 
and an ADC. The FPGA configures the RF front-end board (AD–FMCOMMS1–EBZ) using the Xilinx® 
Microblaze™ 32-bit Reduced Instruction Set Computer soft processor and sends I and Q data to the DAC. 
The FPGA also receives down-converted and sampled I and Q data from the RF front-end board (AD–
FMCOMMS1–EBZ). 

The test waveform can demonstrate STRS commands for configuration and control of the test 
waveform, Tx-side streaming data operation, RF front-end board (AD–FMCOMMS1–EBZ) 
configuration, Rx-side streaming data, and STRS telemetry querying. 

3.0 General Purpose Module (GPM) 
This section describes the GPM. 

3.1 Software Control Description 

The GPM houses the STRS reference implementation. This implementation runs the STRS OE. The 
STRS OE allows for applications to reference the STRS APIs, which are used to standardize the 
communication protocols on NASA’s space SDRs. The software implementation presented in this design 
is an adaptation of a test implementation written for VxWorks and ported onto a Linux system. 
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There are two methods for controlling the iPAS STRS radio. Each method is representative of external 
control from an FC, where the GPM acts only as a passthrough interface that is standardized by the STRS 
APIs, sending commands, getting responses, and controlling data transfer between the FC and the SPM. 

The first method of control is an external computer connected via Ethernet. This computer runs a 
flight computer simulator (FCS) that can send commands, receive and interpret command responses, and 
send and receive data. This method is described in Section 4.0. Additionally, an application for simulating 
data transfer from an FC called IPASDataIO was written. This application also resides in the external 
control computer and it is described in Section 4.0. A clone of the IPASDataIO application is also present 
in the STRS_Architecture_RI directory of the GPM. 

The second method of control is internal to the GPM, where a separate software process is 
implemented to send commands to the process running the STRS reference implementation commanded 
via Ethernet. The TCP/IP configuration allows for a software socket to be created and any other process 
can communicate to that interface via a static IP address. This can be used to control the radio using both 
internal processes in the GPM and an external FCS connected via Ethernet. The GPM is running the 
Ubuntu Linux 12.04 LTS OS. This OS allows for the communication interfaces in the different parts of 
the radio to use the standard protocols implemented in the UNIX environment out of the box. 

Both control methods described in this document implement the STRS commands described in Table I. 
The anatomy of these commands is described in the STRS iPAS Hardware Interface Description document 
(Ref. 1). The command header specified in Table I is only relevant to control the sample waveform 
developed for this implementation, “WFIPAS2.” 

The commands for this radio implementation have the following structure: 

 Source; Destination; Property; Property Name; Property Value 

In this implementation the Source = FC (Flight Computer) and Destination = WFIPAS2 (Sample 
Waveform). This can be changed when other waveforms are developed to run on the platform. However, 
WFIPAS2 requires two commands to be sent so that the SDR can be configured and controlled through 
the STRS. These commands are: 

 
(1) FC;FC;STRS_InstantiateApp;%STRS_BASE%/WFIPAS2/WFIPAS2.cfg  
(2) FC;WFIPAS2;STRS_Initialize 
 
In order to facilitate the automation of standard control commands for WFIPAS2, several bash script 

files were created with the “.init” extension. These files will be discussed in more detail in Section 3.4. For 
now, it is only important to know that these files can be run and modified to automatically configure the 
SDR for a particular task. This way the user is not required to enter command after command and explicitly 
write out each of the properties. The user may simply edit one of these “.init” files and either copy and paste 
commands onto the terminal or run the scripts as a whole to achieve a specific configuration. 

Other commands are implemented in WFIPAS2. However, the relevant commands for control and 
interface testing of the SDR are listed in Table I. These are the only commands necessary to exercise all 
the interfaces and demonstrate the capabilities of WFIPAS2. 

One important aspect to note is that some commands can only be executed while the waveform is not 
running. The SOURCETX and SOURCERX property values can only be set while the waveform is 
stopped. All the other commands should be used after the waveform is running (after executing 
STRS_Start). 
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TABLE I.—SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS) INTEGRATED POWER, AVIONICS, AND 
SOFTWARE (IPAS) GENERAL PURPOSE MODULE (GPM) COMMAND LIST AND DESCRIPTION 

Command 
source and 
destination 

Command 
property 

Property name Property value Description 

FCa; FC; STRS_ 
InstantiateApp 

%STRS_BASE% 
/WFIPAS2 
/WFIPAS2.cfg 

NA Instantiate base object for waveform 
configuration 

FC; 
WFIPAS2b; 

STRS_Initialize; NA NA Initialize environment control 
interface 

FC; 
WFIPAS2; 

STRS_Start; NA NA Start waveform 

FC; 
WFIPAS2; 

STRS_Stop; NA NA Stop waveform 

FC; 
WFIPAS2; 

STRS_Configure; SOURCETX STREAMING_PRBS Set data source to external PRBSc 
generator 

STREAMING_SINE Set data source to external sine wave 
generator 

PRBS Set data source to internal (from 
SPMd) PRBS generator 

SINEWAVE Set data source to internal (from 
SPM) sine wave generator 

SOURCERX NORMAL Set data sink to forward data to RFe 
module 

LOOPBACK Set data sink to return data to SPM 
bypassing the RFMf  

STREAMTX ENABLE Enable Tx-side streaming  

DISABLE Disable Tx-side streaming  

STREAMRX ENABLE Enable Rx-side streaming  

DISABLE Disable Rx-side streaming  
PRBS ENABLE Enable internal (from SPM) PRBS 

generator  

DISABLE Disable internal (from SPM) PRBS 
generator 

BERTg ENABLE Enable internal (from SPM) BERh 
tester  

DISABLE Disable internal (from SPM) BER 
tester 

INSERTERROR 1, 2, any integer Insert errors in internal (from SPM) 
PRBS generator 

FC; 
WFIPAS2; 

STRS_Query; BERDATA NA Queries internal (from SPM) BER 
tester 

aFlight computer. 
biPAS sample waveform.  
cPsuedorandom bit sequence. 
dSignal processing module. 
eRadiofrequency. 
fRadiofrequency module. 
gBit error rate tester. 
hBit error rate. 
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Figure 3.—Typical output from iconfig in the general purpose module (GPM). 

3.2 Verifying Correct Interface Configuration 

The GPM’s Ethernet interfaces should automatically configure at login. However, it is good practice 
to make sure the interfaces are configured correctly before starting operations. To verify the 
configuration, perform the following actions: 

 
(1) Log in to the jsc1 user. 
(2) Open a terminal window. 
(3) Type the command ifconfig. 
(4) If the output from ifconfig is not the same as illustrated in Figure 3, restart the GPM. 

3.3 Operating the General Purpose Module (GPM) To Control the Software Defined 
Radio (SDR) 

The STRS reference implementation source code is housed in the GPM in the directory path: 
/home/jsc1/code/strs/STRS_Architecture_RI. In this directory, an executable shell script has been created 
to run the Ethernet control protocol for the STRS OE to run WFIPAS2. This shell script is called 
runGUI.sh. 

The following procedure describes how to initialize the control interface in the GPM. 
 
(1) Connect the power converter to the embedded PC (eBOX620–110–FL) and to the Xilinx® 

ML605 FPGA board, respectively. Make sure that the power supplies are not live (not connected 
to the grid socket). 

(2) Connect the included Ethernet cable from the slot on the embedded PC (eBOX620–110–FL), 
labeled “FPGA,” to the Ethernet connector on the Xilinx® ML605 FPGA board. 
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(3) Connect a Universal Serial Bus (USB) mouse (not included) and USB keyboard (not included) to 
the embedded PC (eBOX620–110–FL). 

(4) Connect a Video Graphics Array (VGA) input display (not included) to the embedded PC 
(eBOX620–110–FL). 

(5) If using an external control computer, connect an Ethernet cable (not included) from the 
remaining open slot of the embedded PC (eBOX620–110–FL) to the Ethernet connector in the 
control computer. 

(6) Connect the power converters to the grid socket. 
(7) Turn on the Xilinx® ML605 FPGA board by operating power On/Off slide switch 2 (SW2) to the 

On position. The DS25 light-emitting diode (LED) will illuminate green to indicate that the 
board is powered on. 

(8) Turn on the embedded PC (eBOX620–110–FL) by depressing the power switch in the back and 
releasing it after 3 s. 

(9) Once steps (1) to (8) are complete, log in to Linux. The password to log in to the Linux desktop 
is “strs” (without quotes). 

(10) Open a terminal window after login. 
(11) Type the following commands into the terminal: 

cd /home/jsc1/code/strs/STRS_Architecture_RI 
./runGUI.sh 

 
Once the control script executes, the GPM is ready to receive commands. 
In order to send commands internally, use the nc command. The nc (or netcat) utility is used for 

controlling actions involving TCP or User Datagram Protocol (UDP). It can open TCP connections, send 
UDP packets, listen on arbitrary TCP and UDP ports, perform port scanning, and process both IPv4 and 
IPv6. In the case of the STRS iPAS Radio, the IPv4 standard is used. 

With the runGUI.sh script running, static IP address 192.168.1.5 is open with a socket created in the 
GPM. This socket communicates through port 1120 and listens for inputs from external, connected 
devices (via Ethernet) or any other process that communicates to that static IP/port combination. For 
internal control, use the echo command and pipe |, the output of echo to nc. Using Table I, a command 
that has the following structure can be constructed to be executed under runGUI.sh: 

 
echo "FC;WFIPAS2;STRS_Start" | nc 192.168.1.5 1120 
 
To send internal commands, follow these steps: 
 
(1) Open a second terminal window (different from the one running runGUI.sh). 
(2) Type a command in the way specified above and press Enter. 
(3) Look at the runGUI.sh terminal window for output related to the command. 

3.4 Examples  

Several examples were written to facilitate the use of internal control in the GPM. These examples are 
files with the extension “.init” and they are located in the following directory path: 
 

/home/jsc1/code/strs/STRS_Architecture_RI/WFIPAS2 
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This section focuses on understanding what is happening in each of the lines of one of the examples 
provided so that the user can have a clear picture of the command structures and procedures used to 
control the SDR. The example files located in the previously mentioned path are 
 

• WFIPAS.init-normal.sh 
• WFIPAS.init-tx.sh 
• WFIPAS.init.txt 
• WFIPAS.init+loopback.sh 
• WFIPAS.init+rxprbs.sh 
• WFIPAS.init+test.sh 
• WFIPAS.init+txprbs.sh 
• WFIPAS.stop.sh 

 
This section explores WFIPAS.init+loopback.sh. The contents of this file are shown below: 

 
0    #!/bin/bash 
1  
2    NC="nc 192.168.1.5 1120" 
3    set -x 
4   
5    echo "FC;FC;STRS_InstantiateApp;%STRS_BASE%/WFIPAS2/WFIPAS2.cfg" | $NC 
6    sleep 1 
7    echo "FC;WFIPAS2;STRS_Initialize" | $NC 
8    sleep 1 
9    echo "FC;WFIPAS2;STRS_Configure;SOURCETX;STREAMING_PRBS;SOURCERX;LOOPBACK" | $NC 
10  sleep 1 
11  echo "FC;WFIPAS2;STRS_Start" | $NC 
12  sleep 1 
13  echo "FC;WFIPAS2;STRS_Configure;STREAMTX;ENABLE;STREAMRX;ENABLE" | $NC 

 
This file configures the SDR to receive PRBS23 data from an external source, pipe the data through 

the GPM, send the data over to the SPM, and then loopback the data in the SPM back to the GPM, 
bypassing the RFM. Then the GPM is configured to forward that same data out to an external sink. The 
external source/sink being used is IPASDataIO (see Sec. 3.1). 

Line 0 is a convention, so the *nix shell knows what type of interpreter is necessary in order to run 
this script. This is not relevant to SDR control; it is simply a convention. Line 2 sets up a variable with the 
static IP address and port to communicate with the process initiated by runGUI.sh. Line 3 handles 
environment variable setting in the instance of the shell script. This is not relevant to SDR control; it is 
only needed for the script to work well if run simultaneously. Line 5 and Line 7 are the initial commands 
needed to instantiate the base object representative of the waveform and then to initialize the control 
environment. 

The SDR configuration commends are in Lines 9, 11, and 13. Line 9 is a combination of two 
commands: FC;WFIPAS2;STRS_Configure;SOURCETX; STREAMING_PRBS and 
FC;WFIPAS2;STRS_Configure;SOURCERX;LOOPBACK. Since properties with different names and 
value pairs are being configured under the same parameter control (STRS_Configure), the command can 
be combined into one STRS_Configure parameter control with the two name and value pairs and it will 
function the same as sending two independent commands. 
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The waveform is started using the STRS_Start command. Now, bidirectional streaming can be 
enabled. Similar to the commands in line 9, the commands in line 13 are combined into one parameter 
control with two sets of name and value pairs. 

The user is encouraged to look through these example files to gain a thorough understanding of the 
internal operation of the SDR and how these files can be used to configure and command the platform 
with ease. 

3.5 IPASDataIO Internal to the General Purpose Module (GPM) 

To exercise the external data path to the STRS iPAS Radio, an application called IPASDataIO was 
written. This is a very simple application. Its main function is to read two files, one PRBS24.bin file, 
containing a PRBS of 1023–1 unique bits repeated eight times, and a cos.bin file containing a sampled sine 
wave. 

This application takes two inputs: input one is the file to be read and input two is the mode of 
operation. As previously stated, the files to be read are either PRBS23.bin or cos.bin and the modes of 
operation are tx (transmit only), rx (receive only), and txrx (transmit and receive). Additionally, this 
application provides a BERT when receiving PRBS23 data and there are three user commands available 
while the application is running. These commands are e to enter an error into the PRBS23 sequence, z to 
clear the status display of the BERT, and s to save a file of sample data containing 2 MB of the Rx 
stream. 

In order to run IPASDataIO follow these steps: 
 
(1) Once logged in to the GPM and running runGUI.sh, configure the SDR to use external data 

sources using the example files in Section 3.4. 
(2) Open a second terminal window (other than the one running runGUI.sh) and navigate to the 

IPASDataIO directory: 
cd /home/jsc1/code/strs/STRS_Architecture_RI/IPASDataIO 

(3) Now the IPASDataIO application can be run in any of these modes: 
(a) Command: ./x86_64-pc-linux-gnu/IPASDataIO.out ./cos.bin tx is used to send sine wave 

data to the GPM, but also to receive sine wave data. An example of executing this command 
is shown in Figure 4. 

(b) Command: ./x86_64-pc-linux-gnu/IPASDataIO.out ./PRBS23.bin rx is used to receive 
PRBS23 data to the GPM and pass it through a BERT. 

(c) Command: ./x86_64-pc-linux-gnu/IPASDataIO.out ./PRBS23.bin tx is used to send PRBS23 
data to the GPM. 

(d) Command: ./x86_64-pc-linux-gnu/IPASDataIO.out ./PRBS23.bin txrx is used to send 
PRBS23 data to the GPM, receive PRBS23 data from the GPM, and pass that data through a 
BERT. 

Note: The IPASDataIO is an independent process to the SDR control interface. It sends data to a 
specific IP address and port combination; whether that results in sending data to another process 
running in the same OS or to a process running on a different machine has no effect on the 
actions of IPASDataIO. 
 
 

 
Figure 4.—Command execution. 
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(4) Now that IPASDataIO is running, the terminal window where it is running should be populated 
with the statistics of the transmitting and receiving of bits, packets, and errors. The user can now 
enter one of three key strokes to initiate the following actions: 
(a) Press e and then Enter to insert an error in the PRBS23 sequence being transmitted. 
(b) Press z and then Enter to reset the counters for the statistics being displayed periodically by 

IPASDataIO. 
(c) Press s and then Enter to save a 2 MB sample for the incoming data form an external source 

to IPASDataIO. The file will be saved under the IPASDataIO directory and it will be called 
saved_data.bin. 

Note: When IPASDataIO is used in txrx mode there are some initial errors displayed in the BERT 
statistics, this is due to the asynchronous nature of the external connection to the GPM. Perform 
step (4)(b) (above) to clear these errors. There should not be any other errors after this initial burst 
(usually less than 100 errors). 

(5) To terminate the application, press the “Ctrl + C” key combination. 

4.0 External Interfaces 
This section describes the system’s external interfaces. 

4.1 Command and Control Graphical User Interface (GUI) 

A command and control GUI can be used as an FCS to send commands to the SDR and receive 
command responses from the SDR via 1 Gbps Ethernet. The purpose of this interface is to demonstrate 
the capability for an external physical device (another computer, an FC, or another SDR) to control the 
STRS iPAS SDR. 

This GUI operates on a Windows 7 64-bit OS PC. The user may choose to install the interface in a 
similar configuration. However, make sure to follow these steps to configure static IP communication via 
IPv4 on the OS. 

 
(1) To configure this interface, navigate to Control PanelNetwork Settings. 
(2) If the Ethernet cable is not connected from the control PC to the GPM, connect it now. Once this 

is done, a screen similar to Figure 5 will appear. 
 
 

 
Figure 5.—Ethernet configuration for the flight computer simulator (FCS) for the Integrated Power, Avionics, and 

Software (iPAS) radio on the Windows 7 personal computer (PC). 
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Figure 6.—Internet Protocol (IP) configuration for the flight computer simulator (FCS) for the Integrated Power, 

Avionics, and Software (iPAS) radio on the Windows 7 personal computer (PC). DNS, Domain Name System; I/O, 
input/output. 

 
To configure the local area network (LAN) connection, follow these steps (Figure 6): 

 
(1) Double-click Local Area Connection. A window will appear with connection settings. 
(2) Click Properties and then double-click Internet Protocol Version 4. 
(3) Select the radio button “Use the following IP address.” 
(4) Enter 192.168.1.2 for the IP address and 192.169.1.1 for the Default Gateway. These settings are 

illustrated in Figure 6. 
 

Once the interface has been configured, the user may choose to copy and paste the 
STRS_IPAS_Radio_External_Control.iso onto a local directory in their host system and then navigate to 
the STRS_FCS folder. To run the application and control the STRS iPAS SDR, follow these steps: 

 
(1) Navigate to the local directory where the application is saved. 
(2) Navigate to STRS_FCSSTRS_FCSbinDebug and run STRS_FCS.exe. A new window 

opens (Figure 7). 
The GUI needs to be configured through this window to communicate with the Ethernet interface that 
was configured at the beginning of this section. 
(3) Click Settings and then click Target Setup (Figure 8). A new window will open. 
(4) Enter the following information (Figure 8): 

(a) Name: User’s choice 
(b) IP address: 192.168.1.5 
(c) Tx Port: 1120 
(d) Rx Port: 1130 

(5) Click Save New and then click OK. 
(6) Click Connect in the top left quadrant of the window (Figure 9). Once connected, the Disconnect 

button will become active (not shown in Figure 9). 
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Figure 7.—Space Telecommunications Radio System (STRS) flight computer simulator (FCS). FC, flight computer; 

IP, Internet Protocol. 
 
 
 
 

 
Figure 8.—Space Telecommunications Radio System (STRS) flight computer simulator (FCS) configuration. 

IP, Internet Protocol; Rx, receive; Tx, transmit. 
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Figure 9.—Space Telecommunications Radio System (STRS) Flight Computer Simulator Connect. 

 

 
Figure 10.—File Command Mode selection. IP, Internet Protocol; Rx, receive; Tx, transmit. 

 
Now the initialization file must be configured. 
(7) Select the File radio button in the top right quadrant of the Command Mode panel. This will 

change the available options in the window (Figure 10). 
(8) Now click the … (ellipsis) button next to the STRS Command File field (Figure 11).  

An instance of Windows Explorer appears (Figure 12). 
(9) Select the appropriate “.init” file. The file is located in STRS_FCSSTRS_FCSbinDebug. 

This configuration uses WFIPAS_JSC.init. 
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Figure 11.—… (ellipsis) button selection. IP, Internet Protocol; Rx, receive; Tx, transmit. 

 

 
Figure 12.—Windows Explorer instance. 

 
The file path populates to the STRS Command File field. 
(10) Click Start. This will cause the output window to be populated and the status window (right 

bottom quadrant) to display the status of the waveform. In the normal window, green colors 
represent successful command implementation. 

(11) After the initialization step completes, select the Command radio button (Figure 13). The 
window switches back to display Command functions. 

(12) At the command window, perform the following: 
(a) Select WFIPAS2 from the To pull-down menu. 
(b) Select a command from the Command pull-down menu. This example uses 

STRS_AbortApp (Figure 14). 
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Figure 13.—File path populated to Space Telecommunications Radio System (STRS) Command File field. IP, 

Internet Protocol; Rx, receive; Tx, transmit. 
 

 
Figure 14.—To and Command selections. 

 

 
Figure 15.—Properties List Editor configuration. 

 
This application allows for control of other STRS implementations that perform many functions 
beyond what the sample waveform WFIPAS2 is intended to do. This application uses only 
STRS_Start, STRS_Stop, STRS_Configure, and STRS_Query. The Source, FC; the Destination, 
WFIPAS2; and the Property, Selected Command; have been selected. 
 

Follow this step to specify the property name and the property value, if the selected property 
requires it. 

(13) For example, to change the property name SOURCETX to STREAMING_PRBS: 
(a) Select STRS_Configure from the Command pull-down menu. 
(b) Click Prop List. A new window titled “Properties List Editor” opens (Figure 15). 
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(c) Enter the name (SOURCETX) and the value (STREAMING_PRBS) in their respective 
fields. Enter the names and values in all caps exactly as they are spelled in Table I. 

(d) Click Add Change. 
(e) Click OK. 

(14) To complete this procedure, click Send to send the command to the SDR. 
 

This procedure can be repeated with all the properties, the property names, and property values in 
Table I. The GUI’s output windows give the user a series of messages about what is happening in the 
background as commands are sent over Ethernet and command responses are received from the SDR. The 
user is encouraged to explore the different options in this GUI to grasp a better understanding of the inner 
workings of this interface. 

4.2 IPASDataIO External to the General Purpose Module (GPM) 

The IPASDataIO.exe application is a clone of the IPASDataIO code internal to the GPM. The main 
difference is that the IPASDataIO.exe application in the external computer had to be run under Cygwin 
(www.cygwin.com) so that the same commands available on the Linux system can be used in the 
Windows OS. 

To install and run IPASDataIO.exe, follow these steps: 
 
(1) Download and install Cygwin in a PC running a Windows 7 64-bit OS with at least 520 GB of 

random-access memory (RAM) and 2 GB of read-only memory (ROM). Follow the Cygwin 
installation steps from the download website (www.cygwin.com). Make sure to include the 
development packages (gcc, cmake, etc.). 

(2) Open the STRS_IPAS_Radio_External_Control.iso using a compatible virtual disk utility and 
copy the IPASDataIO directory to the local drive. 

(3) Open a Cygwin terminal and use the cd command to navigate to where the IPASDataIO 
directory was saved. 

(4) Once there, run the make command. 
(5) After make has finished, run the “.out” file. 
 
Make sure to stay in the same directory where PRBS23.bin and cos.bin are located. The relative path 

of the executing program in the command must be specified to run IPASDataIO. The command will look 
something like this: 
 

/path/to/the/directory/IPASDataIO/x86_64-pc-linux-gnu ./IPASDataIO PRBS23.bin txrx 
 

This instance is running in transmit/receive mode for a PRBS23 data stream. The mode of operation 
and input file will differ based upon specific test configurations. 

4.3 Plotting a Captured Sine Wave 

When using IPASDataIO, the user is able to capture data coming from the SDR. This data can be 
either PRBS, which is usually passed through a BERT to test for errors, or it can be a sinusoid wave. The 
data coming from the SDR is a set of 16-bit words (2 bytes) representing signed integers. This data is read 
by IPASDataIO and saved to the “saved_data.bin” file when the user presses the S key and then Enter. 
This data can be plotted to make sure it outputs a sine wave with one caveat. Because of the 

http://www.cygwin.com/
http://www.cygwin.com/
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asynchronicity of the data stream and the pairwise representation of each word (by 2 bytes), it is not 
known whether the portion of data saved in “saved_data.bin” is representing the words starting with its 
first or second byte. Therefore, plot the data as is, shifted by 1 byte. One of these plots should look like a 
sinusoid. 

The plotting process is done in two steps. The first step converts the data into a readable format for 
the plotting tool. The second step inputs those files into the plotting tool to generate the graphs. 

The user can copy and paste the formatting and plotting tools from the 
STRS_IPAS_Radio_External_Control.iso in the External Interface/Plot Data directory. Once these files 
are saved to the host drive, a data set can be plotted, assuming IPASDataIO has successfully run and the 
user has saved a “saved_data.bin” file. 

To plot the content of the file, follow these steps: 
 
(1) Copy the “saved_data.bin” file from the IPASDataIO directory to the PlotData/PlotData/distrib 

directory. 
(2) Run the DartaFormat.sh script using Cygwin. This will generate three files: “saved_data1.bin,” 

“inverted_united.txt,” and “inverted_united1.txt.” 
(3) Now run the PlotData.exe application. This is a MathWorks® MATLAB® stand-alone app, so the 

user needs to install the Mathworks® MATLAB® Runtime Compiler (MRC) in order to run this 
executable. This is a free application from www.mathworks.com. 

(4) Once the app has run (it takes about 10 to 40 s to generate the plots), the user can observe 
something similar to what is shown in Figure 16. 

 

As Figure 16 shows, the top right plot (Figure 16(b)) is a sinusoid, indicating that this instance of data 
collection is aligned by word to the collection time. Figure 16(c) represents a plot of the data that is 
shifted by one, which is shown by the uneven plot. 
 

 
Figure 16.—PlotData.exe results. (a) saved_data file selection. (b) Aligned sinusoidal plot. (c) Plot with data shifted 

by 1 byte. 

file://apollo/EVolume/E-19000-19999/E-19300-19399/E-19362%20Roche/www.mathworks.com
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5.0 Signal Processing Module (SPM) 
This section provides a detailed description of how to configure and use the SPM. 

5.1 Hardware Identification 

This FPGA portion of the iPAS STRS radio design is implemented on a Xilinx® ML605 Rev D 
evaluation board that contains a Xilinx® Virtex®-6 XC6VLX240T–1FFG1156C FPGA. 

5.2 Development Tools 

The development tool used for this design is the Xilinx® Integrated Synthesis Environment® (ISE) 
Design Suite: System Edition, version 14.4, which includes the Embedded Development Kit and Software 
Development Kit (SDK). The Xilinx® ISE® Simulator (ISim) was used for design simulation of most of 
the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) modules. 

5.3 Xilinx® ML605 Field-Programmable Gate Array (FPGA) Board Configuration—
Jumpers and Dual In-Line Package (DIP) Switch Settings 

To use the wrapper and test waveform as is, insert jumpers and set DIP switches according to the 
listings in Table II. Some of the jumpers are in their default locations, and are not needed for the iPAS 
STRS radio (i.e., Peripheral Component Interconnect Express (PCIe) lane size). If a jumper connector is not 
listed, no jumper is needed. Table II shows the jumper and switch configurations for the delivered platform. 

5.4 CompactFlash (CF) 

The Xilinx® ML605 FPGA board contains a system archiver compression file (ACE) CF 
configuration controller, which is compatible with Type I or II CF cards. The CF configuration controller 
can be used to program the FPGA with an ACE file on the CF card (inserted in connector U73) during the 
board power-on cycle. Reprogramming of the FPGA can also be initiated by pushing 
SYSACE_RESET_B SW3 on the FPGA board. 

To use the CF configuration controller to program the FPGA, S4 on DIP switch S1 must be set to On. 
The switches S1, S2, and S3 on DIP switch S1 select which folder location on the CF card to use for 
programming the FPGA. The CF card contains eight subfolders, each of which can contain only one ACE 
file. 

5.5 Joint Test Action Group (JTAG) Programming 

During waveform development, the Xilinx® Virtex®-6 FPGA on the Xilinx® ML605 FPGA board can 
be programmed using the Xilinx® iMPACT program, the ISE® Design Suite generated.bit file, a USB 
(Windows PC) to mini USB cable (Xilinx® ML605 FPGA board side), and the USB JTAG connector 
(J22) on the board. 

5.6 Archiver Compression File (ACE) File 

The final iPAS STRS radio FPGA design has been programmed with an ACE file loaded onto the CF 
configuration controller located at U73. The FPGA device will automatically be programmed from the CF 
card at power-on. If the radio does not appear to be working properly, reprogram the FPGA by pressing 
SYSACE_RESET_B SW3. 
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TABLE II.—JUMPER AND SWITCH CONFIGURATION FOR DELIVERED PLATFORM 
Jumper purpose/DIPa switch IDb Location Jumper connections or 

switch position 
Description 

Ethernet PHYc configuration J66 Jumper pins 1 and 2 To use GMIId (1 Gigabit) interface to 
Ethernet PHY J67 Jumper pins 1 and 2 

J68 No jumper 

For JTAGe access to the board J17 Jumper pins 1 and 2 Enables JTAG access without FMCf 
modules installed J18 Jumper pins 1 and 2 

System ACEg error LEDh disable 
Jumper 

J69 Jumper pins 1 and 2 Enables LED, which will flash if there is an 
ACE problem 

SFPi module control J54 Jumper pins 1 and 2 SFP_RT_SEL (full bandwidth) 

J65 Jumper pins 1 and 2 SFP_TX_DISABLE (SFP enabled) 

PCIej lane size J42 Jumper pins 5 and 6 X8 lane size 
System monitor  J19 Jumper pins 1 and 2 Use on-chip reference 

J35 Jumper pins 1 and 3 Not connected 

Jumper pins 2 and 4 FPGAk thermal diode access 

DIP switch S1 S1 CFGAddr 0—Off Selects which CFl image is downloaded to 
the FPGA (selects subfolder cfg 4) S2 CFGAddr 1—Off 

S3 CFGAddr 2—On 

S4 SysAce Mode—On Enable ACE boot 

DIP switch S2 S1 EXT CCLK—On Oscillator enable 
S2 CS_SEL—On Boot EPROMm select 

S3 M0—Off FPGA mode (slave SelectMAP) 

S4 M1—On 
S5 M2—On 

S6 Flash_A23—Off Flash address select (lower) 
aDual in-line package. 
bIdentification. 
cPhysical layer. 
dGigabit media-independent interface. 
eJoint Test Action Group. 
fFPGA Mezzanine Card. 
gArchiver compression file. 
hLight-emitting diode. 
iSmall form-factor pluggable. 
jPeripheral Component Interconnect Express. 
kField-programmable gate array. 
lControlFlash. 
mErasable programmable read-only memory. 

5.7 Field-Programmable Gate Array (FPGA) Mezzanine Card (FMC) Connector 
Interface to Radiofrequency (RF) Board 

The RF front-end board (AD–FM–COMMS1–EBZ) connects to the FGPA in via the FMC Low Pin 
Count (LPC) connector (J63). See the Radiofrequency (RF) Front-End Board to Field-Programmable 
Gate Array (FPGA) Interface through Low Pin Count (LPC) Mezzanine Connector table in the iPAS 
STRS Radio Hardware Interface Description document (Ref. 1) for details about the FMC connector 
interface. 
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5.8 Power Supply 

The Xilinx® Virtex®-6 ML605 Evaluation Kit comes with a 12 V alternating current (AC)-to-direct 
current (DC) power supply. The power supply has a 6-pin plug that mates with the Xilinx® ML605 FPGA 
board 6-pin Molex Mini-Fit-type connector at J60. The power can be turned on and off using the power 
On/Off slide SW2 mounted on the Xilinx® ML605 FPGA board. When the power supply is connected 
and the power On/Off slide SW2 is On, the DS25 LED will be green. 

5.9 Viewing the Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter 
(DAC) Signals Using the Xilinx® ChipScope™ Pro Tool 

A ChipScope™ Pro tool Integrated Logic Analyzer (ILA) core was included with the 
STRS_Waveform module to allow the user to view particular signals when operating the delivered 
design. The user is able to view the I channel, ADC, and DAC samples as well as the input data for Rx-
side streaming packets. Table III shows the viewable signals and the ChipScope™ Pro tool configuration. 

To view the signals, open the ChipScope™ Pro tool 64-bit version under ISE® DesignSuite 14.4. Click 
the Open Cable/Search JTAG Chain symbol in the upper left corner of the ChipScope™ Pro tool window. 
When the open cable process is finished, click FileOpen Project and browse to select 
ChipScopeProjectsWaveformADCViewer.cpj to open the saved ChipScope™ Pro tool configuration 
file. Open the Trigger Setup and Bus Plot windows. 

Configure the Trigger Setup according to Table III, based upon the signal required for viewing. 
Figure 17 shows the Trigger Setup window, where a blue arrow points to the TriggerPort Value and a red 
arrow points to the Storage Condition block. Edit the TriggerPort0 Value to match the M0:TriggerPort0 
column in Table III. To change the Storage Condition, click in the field pointed to by the red arrow, and 
the window in Figure 18 will open. Edit the radio buttons and check boxes according to the Storage 
Qualification column in Table III. When the Storage Qualification is edited as shown for the Rx-side 
streaming data rows in Table III, data is stored only when the RxWFClockEn2 signal is high (i.e., data is 
stored at the waveform parallel data rate, which is the Serial Data Rate ÷ 16). 

Figure 19 to Figure 24 show examples for each of the configurations shown in Table III. 
 

TABLE III.—CHIPSCOPE™ PRO TOOL CONFIGURATION 
Signal to view Rxa-side data 

source 
Txb-side data source M0:TriggerPort0 Storage condition 

selection 
Figure 

reference 

ADCc samples,  
I channel 

ADC Internal sine wave XXXX_XXX1 ● All Data Figure 19 

ADC samples,  
I channel 

ADC PRBSd (either 
internal or streaming) 

XXXX_XXX1 ● All Data Figure 20 

DACe samples,  
I channel 

N/A Internal sine ave XXXX_XXX1 ● All Data Figure 21 

DAC samples,  
I channel 

N/A PRBS (either internal 
or streaming) 

XXXX_XXX1 ● All Data Figure 22 

Rx-side 
streaming data 

ADC Internal sine wave XXXX_XXX1 ● AND Equation 
 Enable 

Figure 23 

Rx-side 
streaming data 

Loopback Internal sine wave XXXX_XXX1 ● AND Equation 
 Enable 

Figure 24 

aReceive. 
bTransmit. 
cAnalog-to-digital converter. 
dPsuedorandom bit sequence. 
eDigital-to-analog converter. 
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Figure 17.—ChipScope™ Pro tool Trigger Setup. 

 
 
 

 
Figure 18.—ChipScope™ Pro tool Storage Condition. 

 
 
 

 
Figure 19.—Sine wave through radiofrequency module (RFM), analog-to-digital converter (ADC) output. 
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Figure 20.—Modulated pseudorandom bit sequence (PRBS) data through radiofrequency (RF) board; analog-to-

digital converter (ADC) output. 
 
 

 
Figure 21.—Sine wave to radiofrequency module (RFM); digital-to-analog converter (DAC) input. 

 
 

 
Figure 22.—Modulated pseudorandom bit sequence (PRBS) data to radiofrequency module (RFM); digital-to-analog 

converter (DAC) input. 
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Figure 23.—Receive (Rx)-side streaming data from sine wave through radiofrequency (RF) board. 

 

 
Figure 24.—Receive (Rx)-side streaming data from sine wave using internal loopback. 

 
TABLE IV.—DUAL IN-LINE PACKAGE (DIP) SWITCH CONFIGURATIONS 

DIP switch Position Result 
S1 CFGAddr 0—On Selects which CFa image is downloaded to the FPGAb 

(selects subfolder cfg 7) S2 CFGAddr 1—On 
S3 CFGAddr 2—On 

aControlFlash. 
bField-programmable gate array. 

5.10 Non-Return-to-Zero-Mark (NRZ-M) Data Format Option 

Demodulation of a binary phase-shift keying (BPSK) signal can sometimes result in a data inversion 
at the output of the demodulator. To avoid this problem, the serial data in the modulator input can be 
converted to NRZ-M bit encoding. The iPAS radio has the option of using either NRZ-M or non-return-
to-zero-line (NRZ-L) encoding. The type of encoding can be selected using S1 at DIP switch S1 on the 
Xilinx® ML605 FPGA board. When S1 is set to On, NRZ-M is selected. 

5.11 Optional Lower Data Rate Design 

A second iPAS STRS radio design was developed with a lower data rate due to the low availability of 
high rate demodulators for verification of the modulator operation. This optional design generates serial data 
at a rate of 9.8304 Mbps. The ACE file for this optional design was put in subfolder cfg 7 on the CF card. 
The user can select this design by changing the DIP switches on DIP switch S1 according to Table IV. 
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6.0 Radiofrequency Module (RFM) 
This section provides a description of how to configure and interface the RFM. 

6.1 Hardware Identification 

The RFM consists of an RF front-end board (AD–FMCOMMS1–EBZ). The RFM was designed to 
provide the analog front end for FPGA-based radio applications. Detailed information about the RF front-
end board (AD–FMCOMMS1–EBZ) can be found in the Analog Devices wiki at 
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz/hardware/functional_overview. 

The RF front-end board (AD–FMCOMMS1–EBZ) is a mezzanine board compatible with the Xilinx® 
ML605 Rev D evaluation board that can plug into either FMC connector on the Xilinx® ML605 Rev D 
evaluation board. The iPAS STRS radio requires the RF front-end board (AD–FMCOMMS1–EBZ) to be 
inserted in only the FMC LPC connector. The Tx side of the high-speed analog board contains a 16-bit 
DAC, followed by an up-converter and a 20 dB linear amplifier. The Rx side of the board contains a 
down-converter, followed by a variable gain amplifier and an ADC. The board also contains clock 
generators and synchronizers as well as frequency synthesizers needed for the operation of the analog 
components. The RF front-end board (AD–FMCOMMS1–EBZ) is configured by the FPGA board 
through an Inter-Integrated Circuit (IIC) interface. The IIC interface is converted to a Serial Peripheral 
Interface (SPI), which is used to configure the components on the RF front-end board (AD–
FMCOMMS1–EBZ). 

6.2 Using the Radiofrequency (RF) Board 

The RF front-end board (AD–FMCOMMS1–EBZ) provides the analog and RF signal processing for 
the iPAS STRS radio. On the Tx side, the RF front-end board (AD–FMCOMMS1–EBZ) takes complex I 
and Q inputs (16 bits) into a high-speed DAC to create an analog signal. A Q modulator up-converts the 
DAC output signal to the desired RF. 

On the Rx side, the received RF signal is demodulated using direct conversion to create I and Q 
analog signals. The analog signals are converted to digital data using a 14-bit ADC. 

The MicroBlaze™ is a soft processor core for the Xilinx® Virtex®-6 FPGA that is used in the iPAS 
STRS radio design to configure the RF front-end board (AD–FMCOMMS1–EBZ). Analog Devices 
provides a reference design to help users interface their RF front-end board (AD–FMCOMMS1–EBZ) 
with the Xilinx® ML605 FPGA board. The reference design is available through their online Wiki 
(http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz). The reference design contains 
functionality that was not needed for the iPAS STRS radio, so that functionality was removed from the 
MicroBlaze.xmp Xilinx® Platform Studio portion of the reference design, leaving only the functionality 
necessary to configure and provide clocking to the RF board and the universal asynchronous 
receiver/transmitter (UART). This provides the waveform developer with the ability to directly connect to 
the RF board’s DAC and ADC with VHDL. 

The SDK portion of the reference design SDK was retained in the iPAS STRS radio. The main.c 
file was edited to configure the ADC sampling rate (200 MHz), the DAC sampling rate (200 MHz), and 
the Rx RF gain (10,000). The default SDK configuration is provided in the 
CompiledDefaultProgram.elf file. 

The MicroBlaze™ processor uses a UART peripheral to display the configuration of the RF front-end 
board (AD–FMCOMMS1–EBZ). When the MicroBlaze™ processor starts after a power-on or a reset, the 
UART will send the following information to a terminal—ADC and DAC sampling rates, variable-gain 
amplifier gain, and RF signal frequency. The UART configuration necessary for the PC-based receiver is 

http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz/hardware/functional_overview
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms1-ebz
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as follows: 57,600 baud, 8-bit data, no parity bit, 1 stop bit, and no flow control. Use of the UART 
requires the installation of a driver on the PC for the Silicon Labs CP210x USB to UART Bridge Virtual 
COM Port (VCP) driver located on the Xilinx® ML605 FPGA board. The driver is provided with the 
Xilinx® Virtex®-6 ML605 Evaluation Kit. 

The main.c program in the SDK files of the reference design contains the assignments to a structure 
variable called defInit (line 70 of main.c). The waveform developer can easily customize the reference 
design by editing this variable. The developer can change the ADC sampling rate, DAC sampling rate, RF 
gain, and RF signal frequency. The defInit variable for the iPAS STRS radio wrapper is configured as 
follows: 

 
XCOMM_DefaultInit defInit = { FMC_LPC,   //  fmcPort 
                   XILINX_ML605, //  carrierBoard 
                  200000000,   //  adcSamplingRate 
                 200000000,   //  dacSamplingRate 
             10000,    //  rxGain1000 
             2400000000ull,  //  rxFrequency 
           2400000000ull}; //  txFrequency 

6.3  Interfaces 

The external interfaces of the RFM are described in the Integrated Power, Avionics, and Software 
(iPAS) Space Telecommunications Radio System (STRS) Radio Hardware Interface Description 
document (Ref. 1). 

7.0 Hardware Initialization Procedure 
This section describes the procedure to configure and initialize the hardware. 

 
(1) Connect an Ethernet cable from the eBOX620–110–FL Linux PC to the port marked with a 

handwritten F on the Xilinx® ML605 FPGA board. 
(2) Connect an Ethernet cable between the eBOX620–110–FL Linux PC and Windows PC 1. 
(3) Connect a VGA cable between the eBOX620–110–FL Linux PC and the Axiomtek™ monitor. 
(4) Verify that the RFM is inserted into the FMC LPC connector on the Xilinx® ML605 FPGA 

board. 
(5) Connect the RF output of the AD–FMCOMMS1–EBZ RF front-end board to the input on the 

STE down-converter with a SubMiniature version A (SMA) coaxial cable. Make sure that a 
20 dB attenuator is inserted at the input of the down convertor. 

(6) Connect the Hittite signal generator output to the mixer input on the down-converter (Figure 25). 
Set signal generator frequency to 2330.00 MHz. The signal generator power level should be set 
to +7 dBm. 

(7) Connect the down-converter output to the Rx Bayonet Neill-Concelman (BNC) connector on the 
back of the demodulator unit. 
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Figure 25.—Hardware setup diagram. Demod, demodulator; FMC, FPGA Mezzanine Card; FPGA, field-

programmable gate array; GUI, graphical user interface; LPC, Low Pin Count; PC, personal computer; RF, 
radiofrequency; SRS, Stanford Research Systems; STRS, Space Telecommunications Radio System; UART, 
universal asynchronous receiver/transmitter; VGA, Video Graphics Array. 

 
(8) Make sure that there is a 20 dB attenuator connected to the input of the AD–FMCOMMS1–EBZ 

RF front-end board. Connect the Stanford Research Systems (SRS) signal generator output to the 
RF input of the AD–FMCOMMS1–EBZ RF front-end board. The SRS signal generator output 
power should come up to the correct level when powered on, but to be sure, measure the power 
with a power meter before connecting it to the AD–FMCOMMS1–EBZ RF front-end board. The 
SRS signal generator output power should be around +7 dBm. If necessary, adjust the output 
voltage until the output power is correct. Set the frequency to 2399.90 MHz. 

(9) Confirm that the programmed CF card is inserted in the Xilinx® ML605 FPGA board connector 
(U73). The high data rate (24.576 Mbps) FPGA waveform can be selected by setting S3, S2, and 
S1 to “100” (or On, Off, and Off) on DIP switch S1, in the order given. The low data rate 
(9.8304 Mbps) FPGA waveform can be selected by setting S3, S2, and S1 to “111” (or On, On, 
and On) on DIP switch S1. 

(10) Check and configure the jumpers and switch settings on the Xilinx® ML605 FPGA board. 
(11) If necessary, connect the power cable to the Xilinx® ML605 FPGA board and operate the power 

On/Off slide SW2 to the On position. 
(12) Power on Windows PC 2. 
(13) Power on the eBOX620–110–FL Linux PC. 
(14) Connect the demodulator to Windows PC 2 with an Ethernet cable. This link contains the 

manual for the demodulator: http://www.paradisedata.com/files/trnsfr/modems-
documentation/evolution/EvolutionSeriesHandbook.pdf. 

(15) To connect to the demodulator GUI, open a browser on Windows PC 2 and enter 10.10.10.110 
for the IP address. 

(16) On the demodulator GUI, select EditMemoryRecall. 
(17) Click the Recall button next to “iPAS_Radio_High_Rate” or “iPAS_Radio_Low_Rate,” 

depending on the data rate selected in step (9) above. It takes a little while for the configuration 
to load, so be patient. 

http://www.paradisedata.com/files/trnsfr/modems-documentation/evolution/EvolutionSeriesHandbook.pdf
http://www.paradisedata.com/files/trnsfr/modems-documentation/evolution/EvolutionSeriesHandbook.pdf
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(18) To view the current settings, go to ViewTxRx. The demodulator is locked onto the received 
signal when the Receive Traffic light on the left side of the GUI is green. 

(19) To view the spectrum, go to ViewGraphsSpectrum. 
(20) To view the constellation, go to ViewGraphsConstellation. 
(21) To view the BER, go to TestBERT. The demodulator BERT is locked to the received PRBS 

data when the light next to the RESTART button is green and the text next to the green light says 
“Sync OK.” 

(22) Click the RESTART button to clear the errors in the BER results. 
(23) To initialize the WFIPAS2 app on the eBOX620–110–FL Linux PC, run script RunSetup1. 
(24) To start the Flight Simulator GUI on the second Windows PC, double-click the FCS shortcut. 
(25) Click the “File” radio button and select the WFIPAS. 
(26) Select the file “WFIPAS_GRC1.int.” 

8.0 Conclusions 
The Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System 

(STRS) radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System 
(RIACS) platform, currently being used for radio development at NASA Johnson Space Center. The 
platform consists of a Xilinx® Virtex®-6 ML605 Evaluation Kit, an Analog Devices AD–FMCOMMS1–
EBZ radiofrequency (RF) front-end board, and an Axiomtek™ eBOX620–110–FL embedded personal 
computer (PC) running the Ubuntu® 12.04 LTS operating system (OS). The result of this development is 
a low-cost, STRS-compliant platform that can be used for waveform development for multiple radio 
applications. This document provides users with information on how to develop a new waveform using 
the RIACS platform. Details about the STRS reference implementation and how it interacts with other 
software components are presented, along with information on how to use the software waveform 
templates to develop new radio waveforms. Details about the field-programmable gate array (FPGA) 
platform wrapper are provided to help the user understand how to interface to the platform and the FPGA 
wrapper. 
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Appendix—Abbreviations and Acronyms 
The following abbreviations and acronyms are used within this document. 

 
AC   alternating current 
ACE  archiver compression file 
ADC  analog-to-digital converter 
API   application programming interface 
BER  bit error rate 
BERT  bit error rate tester 
BNC  Bayonet Neill-Concelman 
BPSK  binary phase-shift keying 
CF   CompactFlash 
DAC  digital-to-analog converter 
DC   direct current 
demod  demodulator 
DIP   dual in-line package 
EPROM erasable programmable read-only memory 
FC   flight computer 
FCS  flight computer simulator 
FIFO  first in first out 
FMC  FPGA Mezzanine Card 
FPGA  field-programmable gate array 
GMII  gigabit media-independent interface 
GPM  general purpose module 
GPP  general purpose processor 
GUI  graphical user interface 
HAL  hardware abstraction layer 
HDL  hardware description language 
I   in-phase 
IIC   Inter-Integrated Circuit 
ILA  Integrated Logic Analyzer 
I/O   input/output 
IP   Internet Protocol 
iPAS  Integrated Power, Avionics, and Software 
ISE®  Integrated Synthesis Environment® 
ISim  ISE® Simulator 
JTAG  Joint Test Action Group 
LAN  local area network 
LPC  Low Pin Count 
LED  light-emitting diode 
MRC  MATLAB® Runtime Compiler 
NRZ-L  non-return-to-zero line 
NRZ-M  non-return-to-zero mark 
OE   operating environment 
OS   operating system 
PC   personal computer 



NASA/TM—2017-219496 30 

PCIe  Peripheral Component Interconnect Express 
PHY  physical layer 
PRBS  pseudorandom bit sequence 
Q   quadrature 
RIACS  Reconfigurable, Intelligently-Adaptive Communication System 
RAM  random-access memory 
RF   radiofrequency 
RFM  radiofrequency module 
ROM  read-only memory 
Rx   receive 
SDK  Software Development Kit 
SDR  software defined radio 
SFP  small form-factor pluggable 
SMA  SubMiniature version A 
SPI   Serial Peripheral Interface 
SPM  signal processing module 
SRS  Stanford Research Systems 
STRS  Space Telecommunications Radio System 
SW   switch 
TCP  Transmission Control Protocol 
Tx   transmit 
UART  universal asynchronous receiver/transmitter 
UDP  User Datagram Protocol 
USB  Universal Serial Bus 
VCP  Virtual COM Port 
VGA  Video Graphics Array 
VHDL  VHSIC Hardware Description Language 
VHSIC  Very High Speed Integrated Circuit 
WFIPAS2 iPAS sample waveform 
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