Architecture for Cognitive Networking within NASA’s Future Space Communications Infrastructure

Presented By: Gilbert Clark / MTI Systems

Authors
Gilbert Clark and Wesley M. Eddy/MTI Systems
Sandra K. Johnson/NASA Glenn Research Center
James Barnes/MTI Systems
David Brooks/VPL
Presenter Biography
Agenda

• Discuss cognitive and possible roles in future SCaN
• Discuss architecture concepts
 – What might cognitive look like?
 – Definitely more than just the radios!
• Describe Cognitive Agent prototype software
 – Cognitive networking framework on the SCaN Testbed
• What does future work look like?
SCaN Future Architecture

• Moving away from discrete networks
 – Space Network, Near Earth Network, Deep Space Network, …

• Moving toward unified architecture
 – Seamless service provision, service interfaces, and scheduling for all network elements
 – Cross-layer services: raw signals, bitstreams, link-layer frames, packets, UDP, delay-tolerant networking, …

• Future solar system internet (SSI) as described by CCSDS
 – International, government, and commercial users
 • Should all use networks responsibly …

• Goals for cognitive
 – Reduce user burden
 – Mitigate operational risks due to growing complexity
 – Open-loop communication and navigation services
 • Reduce need for direct operator intervention
Goals: NASA Intelligent Routing (NITRO) Effort

1. **Reduce operator burden**

 Enhance performance on operational efficiency metrics ...

2. **Improve operator efficiency**

 Support scale-up in complexity, diversity, and volume / capacity ...

 ... without a corresponding scale-up in human resource allocations

3. **Facilitate autonomous operations**

 Enable operations where no human can support communications infrastructure (e.g. Mars)
Iterative Development

Static Network Configurations
- Early DTN Experiments
 - Manually configured node parameters, routing plans, etc.

Dynamic Network Configurations
- Reactive Control Plane Protocols (e.g. Link State Routing)
 - Typical Internet Routing (OSPF, etc)
 - Protocol detects and reacts to link and network changes, contacts may be ad-hoc
- Time-Triggered Configurations
 - Contact Graph Routing
 - Protocol conveys expected future events, but other node configuration parameters may still be manually managed

Predictive Network Configurations
- Proactive Control Plane
 - Temporospatial SDN
 - Centralized intelligence finds optimal network-wide configurations and distributes to nodes
- Cognitive Control Plane
 - Goal for NITRO
 - Distributed cognitive agents autonomously learn network conditions, correlations, and behaviors

Operator Burden

System Intelligence
Toward Cognitive System Engineering

• Not really One True Cognitive to rule them all
 – Instead, things are situationally appropriate
 • Huge number of different AI and ML techniques
 – Neural networks, genetic programming, SVM, and more!
 • Different techniques make sense in different situations
 • Need to blend autonomy and automation …
 – … in ways that make sense for the mission
 – Many different techniques to achieve cognitive behaviors …
 • Cognitive offload – perform computation elsewhere
 • Autonomic computing / networking – “self-management”
 • Information-centric networking – emphasize “what”, not “where”
 – … optimized across many different “domains”
 • “big brain vs. little brain”
Prototype Cognitive Agent

- Prototyping intelligent routing software and protocol
 - Built to support present and future flight / ground systems
 - Current on-orbit testing via SCaN Testbed...
- Empirically determines link characteristics ...
 - ... and makes routing decisions based on goals
 - “minimize latency”, “maximize reliability”, etc.
- Also collects data that can be used for future work ...
 - In order to learn, we need data from which to learn ...
- ... and offers a way to swap cognitive engines
 - Less of a focus on immediate intelligence in *this* agent
 - More of a focus on a good API and an extensible framework
 - Make future experiments easier ...
Cogent – Construction

Legacy Applications

TCP/UDP

IP

COTS

CCSDS

Cognitive Applications

Cogent

Cogent

Upper Layer Interfaces

Probes

Cognitive Engine

Routing Information

Scheduler

Lower Layer Interfaces

Feedback
Technology Gaps and Future Work

• Cross-layer signaling
 – Standardization is an important aspect of this …

• Algorithm development
 – More intelligent approaches to autonomy and management

• Computational offload
 – Incremental upgrade of static hardware resources

• Debugging / management of intelligent systems
 – “You did WHAT?! What were you THINKING?!”

• Self-knowledge
 – “Generally, I’m not very good at …”

• Self-design
 – “Wouldn’t it be nice if I could fly?”
Wrapping Things Up

• Thanks for listening!

• Speaker: Gilbert Clark – gilbert.j.clark@nasa.gov
 – Feel free to contact with questions, concerns, etc.

• Questions? Comments? Concerns? Criticisms?