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List of Acronyms

To be presented by A.Teverovsky at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology 
Workshop, Greenbelt, MD, June 2017.

AF acceleration factor MLCC multilayer ceramic capacitor
BME base metal electrode MOR modulus of rupture
DCL direct current leakage PME precious metal electrode
ESR Equivalent series  resistance QA quality assurance

FPGA field-programmable gate array RB reverse bias
HALT highly accelerated life testing S&Q screening and qualification

HT High temperature SMT surface mount technology
HTS high temperature storage TC temperature cycling
IDC inter-digitated capacitor VH Vickers hardness
IFT Indentation Fracture Test WTC wet tantalum capacitor
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Outline
 Update on tantalum capacitors.
 Leakage currents, gas generation and case 

deformation in wet tantalum capacitors.
 MnO2 chip capacitors:

• ESR degradation.
• Acceleration factors for DCL degradation and failures.
• Effect of moisture on degradation of reverse currents.
 Polymer capacitors.
 Future work.

 Update on ceramic capacitors.
 Mechanical properties of MLCCs.
 Failures in BME capacitors with defects.
 Effect of cracking on degradation of MLCCs at HT.
 Future work.

To be presented by A.Teverovsky at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology 
Workshop, Greenbelt, MD, June 2017.
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Leakage Currents, Gas Generation and 
Case Deformation in Wets

To be presented by A.Teverovsky at the NASA Electronic Parts and Packaging (NEPP) Electronics Technology 
Workshop, Greenbelt, MD, June 2017.
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 NEPP report (https://nepp.nasa.gov/) contains:
 Part I.  Analysis of leakage currents; 
 Part II. Gas generation, hermeticity, and pressure in the case.
 Part III. Electrolyte at the glass seal.
 Part IV. Deformation of cases in high capacitance value wet tantalum capacitors.

 Risks of internal leaks: non-oxidized surfaces; corrosion of welds; 
excessive leakage currents and gas generation.

 To reduce failures a special conditioning at HT is recommended.

WTCs with different types of 
internal seals
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Leakage Currents, Gas Generation and 
Case Deformation in Wets, Cont’d

To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics 
Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.
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 Multiple (1650) transients did 
not cause case bulging likely 
due to H2 outdiffusion through tantalum case.

 TC can result in irreversible lid deformation and excessive DCL.
 To assure reliable operation in vacuum, HTS testing at 150 ºC for 

1000 hours is recommended.
 Glass seal protection in button case capacitors is less effective 

compared to the cylinder case parts.
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ESR Degradation in MnO2 Capacitors
A report (https://nepp.nasa.gov/) includes analysis of environmental factors: 
vacuum, high temperature storage, temperature cycling, moisture, and soldering.

To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics 
Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.
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Most parametric ESR failures are due to insufficient margin to ESRlimit.
MnO2 caps can withstand 1000 hr at 150 °C and at 85 °C/85% RH.
AEC-Q200 requirements are much more severe compared to M55365.
Compressive stresses after bake reduce delaminations and squeeze 

microcracks in cathode layers resulting in reduction of ESR.
Swelling of MC and stress relaxation in moisture have opposite effects.

Examples of ESR variations during HTS and humidity testing

https://nepp.nasa.gov/


Acceleration Factors for DCL 
Degradation and Failures

To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics 
Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

7

A report (https://nepp.nasa.gov/) describes 
catastrophic and parametric failures in Ta 
capacitors, their mechanisms and AF. 

 Analysis showed that 5.5 < B < 10.3, 1.42 < Ea <1.66 eV.
 Parametric degradation is reversible and can be annealed at HT. 
 The mechanism of degradation is attributed to migration of 

oxygen vacancies in the dielectric with E ~1.1 eV.
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Kinetics of Moisture Sorption in MnO2 
Capacitors

8To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) 
Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.
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 Slugs in tantalum chip 
capacitors can be used 
as moisture sensors.
 A model for C-t
variations has been 
developed.
 Bake-out times can be 
selected based on the 
characteristic times of 
the desorption process.

Moisture sorption can be characterized by two time constants



Effect of Moisture on Degradation of 
Reverse Currents in MnO2 Capacitors

9To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) 
Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.
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 Degradation under RB strongly 
depends on presence of moisture in 
environments and preconditioning. 

 Oxygen vacancies play important 
role in formation of protonic species.
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Polymer Capacitors

10To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) 
Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 
2017.

Report “Evaluation of 10V chip polymer tantalum capacitors…” 
(https://nepp.nasa.gov/) describes issues with low-voltage parts.
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Parametric failures are likely to be major issues with polymer caps.
QA system developed for MnO2 capacitors is not applicable.
Unstable leakage currents that might be more significant in vacuum.
Significant degradation of ESR during HTS.

https://nepp.nasa.gov/


Polymer Capacitors, Cont’d

11To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics 
Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

One of the most intriguing problems: anomalous transients after HTS

 Moisture plays an important role in 
the mechanism of transients.

 Anomalies in long-term transient 
currents might be due to changes in 
the trap system of Ta2O5.

 More analysis necessary.
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Future Work on Tantalum Capacitors

To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics 
Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

 MnO2 chip capacitors.
 Complete current tasks.
 Reliability acceleration factors for automotive grade capacitors.

 Advanced wet capacitors. 
 Effect of HT storage on performance and reliability.
 Evaluation of SMT wet tantalum capacitors.

 Polymer capacitors.
 Degradation models for HTS and recommendations for S&Q.

 Super-capacitors for space application.
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Mechanical Properties of MLCCs

13To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology 
Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

 Can mechanical characteristics predict robustness of MLCCs 
under soldering stresses?

 Report that is available at https://nepp.nasa.gov/ includes:
 Flexural Strength Testing of MLCCs.
 Vickers Hardness Testing.
 Indentation Fracture Test (IFT).
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 Flexural strength method determines tensile strength at the surface. 
 No substantial difference between mechanical characteristics of BME and PME 

capacitors.
 Smaller size MLCCs have greater strength – Benefits of BMEs.
 Same size capacitors can be used for comparative analysis of the lots.
 Variations of MOR values from lot to lot might exceed 50%. 
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https://nepp.nasa.gov/


Vickers Hardness

14To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology 
Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

 In-situ VH measurements are possible using MLCCs with 
relatively thick cover plates.  P should be low so the depth of the 
indentation is < 2x the thickness of the cover plate.

 No significant difference between PME and BME capacitors.
 Improvements to reduce errors might allow for revealing 

differences in lots.

 Hardness is a resistance to indentation.
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Indentation Fracture Test

15To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology 
Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

 IFT can provide useful information regarding robustness of capacitors 
under soldering conditions, but additional analysis is necessary. 

 Mechanical testing might be useful for selecting robust parts for manual 
soldering, but more work is necessary to reduce errors and select criteria. 

 For critical applications a combination of assembly simulation and special 
testing might be recommended.

 Fracture Toughness: the ability of a material to withstand stresses 
in the presence of cracks.

 IFT technique is the most controversial.
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Failures in BME Capacitors with Defects

16To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology 
Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

 Migration of VO
++ is enhanced either by increased E, as in case of 

thinning of the dielectric, or by increased µ, as in case of cracks.
 Catastrophic failures occur when ΦB decreases to ΦBcr. For 

capacitors having small, micrometer-size defects ΦBcr is low so 
catastrophic failures are unlikely.

 In the range of typical HALT conditions voltage increases the 
probability of catastrophic failures to a greater degree compared 
to temperature. This might result in errors in AFs.

Thermal run-away model
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17To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics Technology 
Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.

Stretched exponential dependence of ΦB with time.
In bulk: τV = 200 hr, (µV ~5×10-15 cm2/Vs)
Along the crack: τc ~10 hr (µV ~10-13 cm2/Vs).

Model: accelerated migration of VO
++ along the cracks.

Simulations are in reasonable agreement with experimental data.
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Future Work on Ceramic Capacitors

 Evaluation of IDC capacitors used 
for FPGAs.

 Comparative analysis of performance and reliability of BME 
and PME capacitors.
 Breakdown voltages.
 Analysis of failures in BME capacitors with defects.
 Express testing to determine reliability  acceleration factors for BME 

capacitors.
 Guidelines for selecting “auto” MLCCs for different project levels.

To be presented by Alexander Teverovsky at the 2017 NASA Electronics Parts and Packaging (NEPP) Electronics 
Technology Workshop (ETW), NASA Goddard Space Flight Center, Greenbelt, MD, June 26-29, 2017.
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