

Trustworthy Autonomy Development and Flight Demonstration Multi-Monitor Run Time Assurance Research Update

Mark Skoog June 2017

Summary Description

Trustworthy Autonomy Development and Flight Demonstration

Thrust 6 Assured Autonomy

Needs: This effort addresses methodology for certifying autonomous systems

Goals/Objectives

Broaden NASA, Federal Aviation Administration (FAA), and Department of Defense (DoD) collaboration to develop a coordinated government position on the relevance of using a run time assurance architecture to address flight safety for an autonomous aircraft to execute select real-world missions

Technical Approach

- Leverage Safe Autonomous Systems Operations (SASO) development of a run-time assurance architecture sufficient to support all safety aspects of the selected missions
- Collect test data of the system sufficient to support the safety case on a subscale aircraft
- Conduct a joint NASA/FAA review of the safety risks of the selected missions identifying performance or data gaps to make the proposed safety case
- Conduct the autonomy flight demonstrations using procedural and test safety mitigation where gaps exist

Research Theme Vehicle-Centric Autonomy Mission Programs Advanced Air Vehicle Program (AAVP) and Transformative Aeronautics Concepts Program (TACP)

Deliverables: Joint FAA/NASA assessment on the use of a run time assurance approach to address the flight safety requirements of an autonomous aircraft

Next logical step: Upon successful completion:

- Address gaps identified in the safety review
- Move system to full-scale aircraft

Benefit to community: Develops a path to certifying autonomous aircraft

Partnerships, Workforce, and Facilities

- **Partners:** FAA, DoD, Industry
- Workforce: \$247,000 procurement
- Facilities: NASA Armstrong and Edwards test ranges
- Impacts: This proposal augments an ongoing NASA Armstrong SASO effort

Armstrong Flight Research Center

Research Timeline

The Challenge of Autonomy

- Verification and certification of a complex system
- Possible solution: run-time assurance (RTA)

Non-Deterministic

System

Safety Systems

Multi-Monitor Run-Time Assurance (MM-RTA)

Research Goal: Develop a methodology for certifying unmanned and autonomous systems using software architecture testbeds

- Use research findings to inform standards and best practices which will accelerate the certification of autonomous systems
- MM-RTA research findings using Low-Altitude Small Unmanned Aircraft System Test Range (LASUTR) and Expandable Variable Autonomy Architecture (EVAA) realistic environment capabilities
- Develop a methodology for generating the artifacts necessary to develop an an airworthiness case for unmanned and autonomous systems

Informing Standards

Engaging the Standards Community

Research findings vetted with ASTM International through Working Group 53403 (WK53403)

- WK53403 Goal: Develop a standard practice that safely bounds the flight behavior of autonomous unmanned aircraft system (UAS)
- Involvement originated from NASA Armstrong collaboration with FAA regarding automated ground collision avoidance system (GCAS) and integrity management work on early autonomy concepts
- NASA Armstrong is collaborating with the FAA and ASTM by sharing research findings, techniques, best practices, and lessons learned throughout development of MM-RTA

Traditional RTA Framework

Informing Standards – Accomplishments

 FAA NASA Armstrong coordination of MM-RTA National workshop ASTM request 	(Summer 2015) (November 2015) (December 2015)	COMPLETE
 Initiation of research toward a Part 23 rewrite 	(May 2016)	
 Joint Review Traveler Phase 1 testing NASA Armstrong gap feedback to ASTM 	(June 2017) (June 2017)	
ASTMWK53403 establishedDraft standard practice complete	(February 2016) (November 2016)	
 Published standard practice NASA white paper augmenting standard practice 	(Summer 2017) (Summer 2017)	PLANNED
 Use of NASA Armstrong MM-RTA and Enhanced Standard Industry package delivery use 	(starting in Spring 2017)	
Armstrong Flight Research Center		— 11

Multi-Monitor Run-Time Assurance

MM-RTA Framework

Expandable Variable Autonomy Architecture (EVAA)

Software Research Testbed for MM-RTA

- Modular software architecture
- Add and replace software components as needed for developing research findings in a relevant environment

RTA Switch and Decider

- Selects what function should be controlling the aircraft at any instance in time
- Risk-based decision making

Monitors

- Ground collision avoidance with obstacle awareness
- GeoFence precisely staying within approved airspace
- Forced landing system contingency management mitigating the consequences of the aircraft's actions
- Social interface functions autonomy expressing Intent

Controllers

Conventional autopilot functions available on most aircraft and all UAVs
 Armstrong Flight Research Center

Brenser Bre

Brown text: Standard RTA components Black text: Unique research components

Improved ground collision avoidance system (*iGCAS*)

Forced landing system

Expandable Part of EVAA

Recovery Controllers Autopilot Aircraft Flight Controls

A software testbed providing a flexible framework for autonomy algorithm research

Allows software growth for future research

MM-RTA: Key EVAA Accomplishments

Aircraft/Testbed Modifications

- Research processor integrated January 17
- Sound and lighting system installed May 17

Research System

- Functional requirements completed November 16
- Design completed February 17
- Coding completed March 17
- Patent for GCAS monitor issued May 17

V&V

- Hardware in the loop sim completed Mar 17
- Integrated V&V completed May 17

Flight Test

- Aircraft characterization test completed March 17
- EVAA flight test began May 17

Reporting

Update to FAA and ASTM May 17

Generating Artifacts for Airworthiness

What is LASUTR?

What is LASUTR?

- A variety of environmental settings
 - Buildings: Large to small
 - > **Obstacles:** Cell-tower, power lines, etc.
 - Routes for flight/mission conduct: Up to 25-mile loop
 - Terrain variations
 - Smooth, hills, mountains
 - 2,000 to 14,000 mean sea level (MSL) elevations
 - Access: Most assets are within a few 100 yards of office space
- Validated range instrumentation
 - Tracking: A validated independent position truth source with centimeter accuracy
 - > Weather: Localized measurements
 - > Ground/obstacle mapping: A validated dataset
 - Video documentation
 - > Time-correlated

LASUTR Areas

Three Areas

- North of NASA Armstrong (3.3 square miles)
- Northwest corner of Edwards Air Force Base (25 square miles)
- 10 miles east of Big Pine (50 square miles)

Sopp Road Area

Coyote Flats Area

Range Instrumentation

Time-space positioning information (TSPI)

- Truth source for aircraft position
- < ½-pound add-on to aircraft</p>
- Anticipated centimeter (cm) accuracy

Ground mapping Light Detection and Ranging (LIDAR)

- Geo-referenced truth for ground obstacles
- Anticipated cm accuracy

Long range optics tracking video

- Image-track
- Accuracy +/- 4 inches at 2,000 feet

Spot winds and video

Time-correlated

Spot winds

L CHASE VEHICLE

Longrange

optics (LRO)

Generating Artifacts – Accomplishments

Flight Ranges

- Forbes range established and being used: Test obstacles ready for testing
- Sopp Road range established: Modest terrain variations ready for testing
- Coyote Flats test range established and being used: High-altitude testing and extreme terrain and foliage

Range Instrumentation

- Independent TSPI: Developed and functioning
- Ground mapping LIDAR for obstacle/feature data: Developed and functioning
- Spot weather instrumentation: Developed and functioning
- Long range tracking optics: Developed

COMPLETE

Conclusion

Linkages to National Research Council (NRC) Autonomy Barriers

Traveler Response	
Indirectly addressed	
Addressed	
Addressed	
Addressed	
Addressed	
Partially addressed	
Addressed at vehicle level	
Addressed	
Indirectly and partially addressed	
Offers an approach	
Addressed	
Addressed	
Partially addressed	
Partially addressed	

Discussion

