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Earth = Our “Bioregenerative” Life Support System 

Wheeler, 2016



On Earth, explorers  ‘live off the land’
• Crew = 33 

• 2 years – elk hunting and fishing

• Learned food technology from native tribes



In space, explorers need in situ food production
• Space Farming enables colonization of space 

• Sustainable: minimize logistics of resupply

• Supplies: Light, CO2, O2, Nutrients, Water, Soil, Seeds, Plant chamber

• Crew Psychological well-being: green Earth

• Food Systems: palatable, nutritious and safe source of fresh food (limited shelf-life) 
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Task: adapt 1g agriculture to fractional g locations



Opportunities: Commercial Uses of Cislunar Space 



NASA – Prepares for missions to Mars 

Human Exploration and Operations Exploration 
Objectives, 2016

Deep Space Gateway – crewed spaceport in lunar 
orbit – access lunar surface & deep space

Deep Space Transport – reusable vehicle to travel to 
Mars and return to the gateway



Commercial uses of Cislunar Space 

BEAM – Bigelow 
Expandable 
Activity Module

ESA – Moon Village & Amazon Moon Deliveries



Space Farming = f ( Plant/Microbial Biology & Engineering )

Research Issues 
• Sensory mechanisms: Gravity sensing and response to mechanisms in cells, plants & microbes.

• Radiation effects on plants/microbes

• Plant/microbial growth under altered atmospheric pressures

• Spaceflight syndromes: Responses to integrated spaceflight environment, microbial ecosystems 
and environments, changes in virulence of pathogens.

• Food safety

• Plant – Microbe Interactions

Hardware Issues 
• Performance: Mitigate spaceflight syndromes for adequate plant growth

• Mass, power & volume restrictions

• Role in life support systems
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The absence of gravity induces physical effects that alter the microenvironment surrounding plants and their organs. 

These effects include: increased boundary layers surrounding plant organs and the absence of convective mixing of 
atmospheric gases. In addition, altered behavior of liquids and gases is responsible for phase separation and for 
dominance of capillary forces in the absence of gravitational forces (moisture redistribution)

Space-Flight Environment

Monje et al. 2003 Jones and Or, 1998



Plant Growth Systems

Zabel et al. Life Sci. Space Res. (2016)
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NASA’s Bioregenerative Life Support Testing 
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Recirculating Hydroponics with Crops– Record yields vs Field

Conserve Water & Nutrients

Eliminate Water Stress

Optimize Mineral Nutrition

Facilitate Harvesting

Will this work in partial g?

Wheat / Utah State

Soybean

KSC

Sweetpotato

Tuskegee

Rice / Purdue

Wheeler et al., 1999. Acta Hort.



Cultivar Comparisons and 
Crop Breeding

Several Universities:

Cultivar Comparisons
wheat, potato, soybean,

lettuce, sweetpotato, tomato

←

Utah State:

Super Dwarf Wheat

Apogee Wheat

Perigee Wheat

Super Dwarf Rice

Tuskegee:

ASP GM-Sweetpotato

←

Dwarf Pepper ↑ and Tomato ↓



Plants for Future Space Missions

International Space Station (plant experiments—salad crops)

Lunar Outpost (supplemental foods)

Martian Outpost / Colonies

Lunar Lander (no plants)

(supplemental foods ⇨ autonomous life support)

2010 2015 2020 2025 2030 2035 2040 2045 2050

Crew Exploration Vehicle (supplemental crops Mars transit)



Bioregenerative Life Support

Integrate physico-
chemical and  plant-
based life support 
systems



Nakamura, Monje & Bugbee AAIA 2013 

Salad Machine – Transit / Orbit
• Scale – Expand from Experimental to Production

• 150 g/d = daily: 25 g salad for Crew of 6
• 1 m2  Planting area

• Performance criteria:
• Productivity – maximize
• Consistency – robust, repeatable
• Crew Time – minimal

• Spacecraft
• Cabin air – CO2, VOCs
• Limited Power & Volume
• Water load to ECLSS
• Microgravity Effects



* Soil Amendments ISRU

Plants

Soil

Inedible

Edible

Biochar / Compost

CO2

Regolith
CH4

O2

hv

CO2

CDRA

Sabatier

Vent

Biomass

*

Make Soil on Surface Systems



Questions?



Light, Productivity, and Crop Area Requirements 
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NASA’s Biomass Production Chamber (BPC)


