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 Abstracts- The Electrostatics and Surface Physics Laboratory (ESPL) at NASA Kennedy 

Space Center has developed a dust mitigation technology that uses electrostatic and 

dielectrophoretic (DEP) forces to disperse and remove the dust already deposited on surfaces 

preventing the accumulation of dust particles approaching or already deposited on those sur-

faces. Dust removal during lunar and Martian exploration activities is of primary importance 

for the success of both robotic and human exploration of Mars and the moon.  This paper 

describes a rigorous 3D model developed at the ESPL that uses and couples two physics, elec-

tromagnetism and particle tracing, both in transient mode to forecast not only the charging 

process of the particles (electrostatic and dielectric dipole moment) but also their motion and 

displacement under an electromagnetic field. The electromagnetic field is generated by sup-

plying a three-phase voltage to an array of parallel conductors embedded in a dielectric sub-

strate. COMSOL Multiphysics®, a general-purpose software platform used for modeling 

and simulating physics-based problems, was used to model and simulate these two physics 

that are present in different phases, continuous (electromagnetism) and discreet (particle 

tracing). The model is aimed at optimizing the implementation of the dust mitigation technol-

ogy developed at the ESPL in terms of the geometry of the conductor array, power require-

ments, and particle removal efficiency. 

I. INTRODUCTION 

Future manned and unmanned extraterrestrial missions will face a vast number of chal-

lenges that include removal of dust particles from solar panels, thermal radiators, analysis 

and exploration equipment, astronaut’s protection items, such as suit gloves, visors and 

attached gears. Dust will have a negative impact on the efficiency of solar panels, thermal 

radiators, and exploration/analysis equipment. ESPL is developing an active dust mitiga-

tion technology that has demonstrated to be especially effective in the removal of dust 

particles from surfaces and in the prevention of the accumulation of those particles on 

such surfaces [1]. This technology basically creates an Electro-Dynamic Traveling Wave 
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(EDTW) at the surface using a series of parallel conductors embedded in the surface and 

connected to an AC source that generates the EDTW on the surface capable of polarizing 

uncharged particles, yielding electrostatic and dielectrophoretic forces on charged parti-

cles, and acting as a contactless conveyor to transport and remove the charged particles.  

The authors have built a rigorous 3D-transient model on this dust removal technology by 

successfully coupling in transient mode the two different physics phases present in this 

dust removal technology, generation of the electrical-magnetic field and the transporta-

tion of charged particles through the EDTW generated by parallel conductors embedded 

in the surface. These two modeled phases, that need to be coupled and solved simulta-

neously in transient mode, are a discrete phase consisting of the dust particles and a 

continuous phase consisting of the electrical and magnetic fields generated between 

and above the conductors by a multiphase AC electrical potential applied at the end 

sides of the conductors.  

II. BACKGROUND AND THEORY 

The dust removal technology implemented by ESPL is based on the EDTW concept de-

veloped by F.B. Tatom in 1967 [1] and implemented later by Masuda in 1970 [3]. This 

technique has been demonstrated experimentally by lifting and transporting charged dust 

particles likely by electrostatic and dielectrophoretic forces generated within the EDTW 

[4,5,6,7,8,9].   

To generate the EDTW at the surface a series of parallel conductors are connected to a 

multiphase electrical potential source to generate a traveling wave acting as a contactless 

conveyor. The EDTW is generated by a AC voltage applied at the end sides of the con-

ductors having the same amplitude and angular frequency but differing in their phase. 

The EDTW is generated parallel to the conductors and its direction oscillates back and 

forth as the polarity of the conductors changes. The change in direction in the electrical 

field yields a wave that generates forces also in different directions on charged particles 

in the region of the electrical field [10].  

The dust particles within the EDTW need to be electrically charged or polarized to expe-

rience a net force that yields the transportation of the dust particles through the EDTW. If 

the dust particles are present in a gaseous atmosphere, such as air in earth and CO2 in 

Mars the voltage applied to the conductors can yield such a strong electrical field that 

ionizes the gas (air on earth and CO2 on Mars) charging the dust particles with ions from 

the gas by either thermal diffusion or the electrical field itself. The particle charging 

through the electric field is called field charging. Field charging is more dominant for 

larger particles ≥ 2 μm, and for smaller particles ≥ 0.2 μm, thermal diffusion charging is 

more dominant [10]. The charge of a given particle is given by 
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Where 

      = Electrical charge at time t  (s) 

     = Saturation charge  (C)  

t  = Charging time (s)  

    = Time constant of the field charging (-)   

     = Permittivity of vacuum 8.85×10
-12

 F/m  

     = Specific permittivity of the particle (F/m)  

    = Particle diameter (m)   

E    = Electrical field (V/m)   

     = Current density (A/m
2
) 

 

The dust particle charged      will experience an electrostatic force proportional to the 

electrical field:  

 

          

 

Where 

     = Electrostatic force (N) 

 

Coupled with the electric field   the magnetic field   is generated wrapping the conduc-

tor and yielding a magnetic force on the charged particles in motion: 

 

           

 

Where  

    = Magnetic force (N) 

  = Magnetic field (Teslas) 

     = particle velocity (m/s) 

 

Additionally an uncharged particle can experience a force from the fact that particles pos-

sess an extrinsic electric dipole moment. If this dipole moment is exposed to a spatially 

non-uniform electric field, the particle experiences a dipole-based force known as 

dielectrophoretic force [10]. In contrast with the charging source stated above that hap-

pens by ionization of the gas surrounding the particles, this additional charging source 

may occur in vacuum and could main dust particle charging source in the moon. Assum-

ing the dust particle as a spherical dielectric particle with a (small) radius in an electric 

field, the electric dipole moment can be expressed as: 
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Where 

   = Electric dipole moment on the particle (C.m) 

     = Permittivity of the medium (F/m)  

    = Particle radius (m)  

    = Mossotti-Clausius factor (-) 

  
  = Complex permittivity of the medium (F/m) 

  
   = Complex permittivity of the particle (F/m) 

    = Electrical conductivity of the medium (S/m) 

    = Electrical conductivity of the particle (S/m) 

    = Angular frequency 

 

The dielectrophoretic force has a vector-valued relationship with the electric dipole and 

is expressed as:  

        

 

Where 

   = Dielectrophoretic force  

 

Replacing (6) into (10)    becomes: 

 

        
            

        

             

As indicated in equation 10 only dust particles yielding an electric dipole moment un-

der a electrical field (equation 6) within non-uniform electrical field are subject to 

dielectrophoretic force. Since the dust particle is small, its dipole moment is considered 

a constant. Equation 11 shows the dependency of the electric-dipole induced force on 

the gradient of the square of the magnitude of the electric field. 

Non-electric forces on the dust particles, such as gravitational, buoyant, and drag forces 

need to be added to computing the net force generated on charged dust particles. The 

more relevant of these forces are: 
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Where 

   = Gravitational force (N) 

   = Friction force (N)  

   = Buoyant force (N)   

   = Particle density (kg/m
3
) 

   = Surrounding gas density (kg/m
3
)  

   = Surrounding gas dynamic viscosity (N-s/m
2
) 

   = Particle velocity (m/s)  

  = Terrestrial gravitational acceleration (9.8 m/s
2
)  

  

Current density  , electrical and magnetic fields   and   included in the above expres-

sions are found by solving Maxwell’s equations subject to certain boundary conditions. 

Maxwell’s equations are a set of equations, written in differential or integral form, stating 

the relationships between the fundamental electromagnetic quantities, Electric field inten-

sity E, Electric displacement or electric flux density D, Magnetic field intensity H, Mag-

netic flux density B, Current density J, and Electric charge density ρ.    

The Maxwell’s equations can be formulated in differential form or integral form. The 

differential form is presented here because it leads to differential equations that the finite 

element method can handle. For general time-varying fields, Maxwell’s equations can be 

written as:  

 

       
  

  
 

 

 

     
  

  
 

             

 

      

             

 

      

             

 

Where 

    = Electric field intensity 
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   = Electric displacement or electric flux density 

    = Magnetic field intensity 

    = Magnetic flux density 

     = Current density 

    = Electric charge density ρ    

 

Equation (15) is known as Maxwell-Ampere law and equation (16) is known as Fara-

day’s law. Equations (17) and (18) are two forms of Gauss’ law: the electric and magnet-

ic form, respectively. Another fundamental equation is the equation of continuity 

 

     
  

  
 

            

Out of the five equations (15) through (19), only three are independent. The first two 

combined with either the electric form of Gauss’ law or the equation of continuity form 

such an independent system. 

To build a comprehensive model for the removal of superficial dust in extraterrestrial 

exploration mission via electrostatic, magnetic, and dielectrophoretic forces we need to 

solve coupled equations (1) through (19) that describe a two-phase system, a discrete 

phase consisting of the dust particles (equations 1 through 14), and a continuous phase 

that surrounds the dust particles (equations 15 through  19). COMSOL Multiphysics
®

, 

a general-purpose software platform used for modeling and simulating physics-based 

problems, was used to model and simulate these interconnected two dissimilar phases 

and simulate in transient mode dust particles removal on extraterrestrial surfaces. The 

problem of tracking the Particles (discrete phase) and yielding the electrical and mag-

netic fields (continuous phase) were formulated using two COMSOL’s modules, the 

Mathematical Particle Tracing (pt) and Electrical Currents (ec) modules respectively. 

The discrete phase (the particles) is assumed to be a volume fraction of the continuous 

phase (domain where the particles are located and exposed to the electrical-magnetic 

field). The mayor challenging in modeling this coupled discrete and continuous phases 

is the fact that both phases need to be solved simultaneously in transient mode as the 

state of the continuous phase is time-dependent having boundary conditions at the outer 

end side of each conductor yielding transient multiphase electrical potential. The state 

of the discrete phase (the particles) is intrinsically time dependent.  

For the discrete phase (dust particles), COMSOL’s Mathematical Particle Tracing (pt) 

module solves an ordinary differential equation for each component of the particle’s 

position vector. This means that three ordinary differential equations are solved for 

each particle in 3D, and two in 2D. At each time step, the forces acting on each particle 

are queried from the computed fields at the current particle position. If particle-particle 

interaction forces are included in the model, they are added to the total force. The par-

ticle position is then updated, and the process repeats until the specified end time for 

the simulation is reached.  

For the continuous phase (electrical-magnetic field), COMSOL’s Electrical Currents 

(ec) module solves Maxwell’s equations together with material properties and bounda-

ry conditions. The equations are solved using finite element method with numerically 

stable edge element discretization in concert with state-of-the-art solvers.     

19) 
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III. MODEL CASE STUDY 

A dust particle removal system consisting of three parallel spiral-shape conductors de-

signed and used by technology developers at ESPL was modeled initially in 2D and 

then extended to 3D. The model uses the same dimensions and materials of the actual 

dust particle removal system used at ESPL and depicted in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.Particle removal system consisting of three parallel spiral-shape conductors de-

signed at ESPL 

 

Each one of the three spiral conductors made of indium tin oxide is 0.25-mm thick, and 

0.05-mm high. The clearance between parallel spiral conductors is 0.27 mm. The indi-

um tin oxide conductor is embedded in a glass substrate shelling the conductor’s su r-

face with a microscopic layer of glass. The electrical conductivity values used in the 

model for the indium tin oxide and glass are 1.4x10
6
 and 5.6x10

−
 
4
 S/m respectively. At 

the end side of each one of the three spiral-shaped conductor a AC potential is applied 

having the same angular frequency and amplitude for all three conductors but different 

phase for each conductor. As the other side end of the conductors is not grounded, mi-

nor potential gradient as well as low electrical current along the conductor is expected 

A. 2D Model Approach 

The mayor assumption in the 2D model approach is the fact that electrical field is gen-

erated only between conductors as the electrical potential gradient along the conductor 

is negligible as the end side is not grounded.  

A 2D model on the multiphase dust removal system depicted in Figure 1 was initially 

built utilizing actual AC potential profile set at the outer side ends of the three spiral -

shape connectors, 1000-V AC potential amplitud and 64-Hz angular frquency for all 

three connectors and individual phases of 0, 2π/3, and 4π/3 respectively. Figure 2 

illustrates the squarewave function used in the model to set these AC potential conditions 

as boundary conditions at the outer side end of each one of the three spiral-shape 

connectors. 
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Fig 2. Multiphased dust removal system via three spiral conductors bearing phases of 0, 

2π/3, and 4π/3 respectively at 1000-V amplitude and 64-Hz angular frquency. 

 

The 2D model setting shown in Figure 2, three square AC potential waveform applied at 

the outer edge ends of three spiral conductors, generates a linear gradient electrical poten-

tial around the conductor's edges starting with a maximum electrical potential value at the 

conductor's edge and vanishing as the distance to the conductor's edge increases to even-

tually reaches zero value. Figure 3 shows the electrical potential and the respective elec-

trical field in one particular instant. Figure 4 shows the electrical field generated at four 

different instances (0, 0.025, 0.05, and 0.1 seconds)..   
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Figure 3.  2D electrical potential profile and its derived electrical field. 

 

 

 
 

 

Fig 4.  2D electrical field profile generated during four instances, 0, 0.025, 0.08, and 0.1 

seconds respectvily. 

As stated above and corroborated in Figures 3 and 4, the electrical field generated at all 

instants within the separation area between parallel conductors is uniformed as the re-

spective gradient of the electrical potential is linear. As stated in equation (10), 

dielectrophoretic force generation is only feasible at non-uniform electrical fields allow-

ing electrostatic force to be the only electric-based force to be considered in this 2D mod-

el approach. Magnetic force is neglected in this 2D model approach as it is actually rele-

vant in 3D domains. 

Electrostatic force outcome on dust particles is basically dictated by the charging time as 

illustrated in Figures 5a and 5b. The trajectory and velocity of a 25-µm dust particle with 

two different charging time  , one as stated in equation 3 (Figure 5a) and the other one 

equal to zero (Figure 5b) differ substantially as charging time determines how fast or 
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slow the particle gets full charge (saturation charge). When charging time is not assumed 

to be zero but a function of the electrical field and the current density (equation 3) the 

particle takes a shorter path but at slower velocity leading to a longer removal time, 0.115 

and 0.07 seconds respectively as shown in Figure 5. It is clear that assuming instantane-

ous saturation charge (Figure 5b) leads to longer instants having full electrostatic force 

being applied to the particle and as a consequence longer instants at maximum velocity 

(red legend color).  

 

 
 

Fig 5. Trajectory and velocity of a dust particle modeled with two charging times: a) 

equation 3, b) 0, 

 

Figure 6 depicts a total of 8,690 1-μm-size particles evenly distributed underneath a 2D 

multiphase spiral-shaped conductors to remove them. The model was solved to estimate 

the trajectory of each particle and the final particle distribution within the 2D domain.    

 

 
 

Fig 6. Initial distribution of 8,690 particles evenly dispersed throughout the spiral-

shaped-conductor removal system. 

Figure 7 depicts the particle removal outcome generated by the model during four differ-

ent instants, 0.0025, 0.01, 0.02, 0.05, 0.1, and 1 second respectively.  
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Fig 7. Model transient outcome on electrotastic removal of 8.690 particles initially 

dispersed evenly as shown in Figure 6.    

 

Collision forces, which occur when charged particles collide with other particles and 

the background gas are not included in the model results illustrated in Figure 7. 

COMSOL’s Mathematical Particle Tracing (pt) module allows the inclusion of these 

forces, they will be included in further studies. 

B. 3D Model Approach 

The 2D domain bearing the three multiphase spiral-shaped conductors used above was 

extruded to create an equivalent 3D domain. The boundary conditions remain basically 

the same but applied to areas (for 3D domain) rather than edges (for 2D domain). The 

entire 3D domain is depicted in Figure 8 and include the basic domains, the surrounding 

(air/CO2/vacuum), the spiral conductors, and the substrate that holds the spiral conduc-

tors. All the outer faces are appropriately assumed to be electrical and magnetically insu-

lated as they are away enough from the spiral-shaped connectors. The current and voltage 

are considered to be present in all domains while the dust particles are reduced to be pre-

sent in the two upper domains above the domain containing the conductors embedded in 

the substrate.  
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Fig 8. 3D domains built to model removal of particles via spiral-shaped conductors 

 

Figure 9 depicts the electric potential, the electric field, and the magnetic field generated 

in a given instance by the three 3D spiral-shaped depicted in Figure 8. Multiphase poten-

tials are applied at the outer ends of the 3D spiral-shaped conductors as illustrated in Fig-

ure 2 for 2D spiral-shaped conductors with the difference that the AC potential are set as 

boundary conditions on the area ends (3D model) rather than the edge ends (2D model) 

of the spiral conductors.     

 

 
 
Fig 9. Electric potential, electric field, and magnetic field yielded by particle removal system 

shown in Figure 8. 

 

3D model yields an electrical potential gradient above the surface of the conductor gener-

ating the EDTW as depicted in Figure 10. The EDTW induces a dipole moment on the 

dust particle (equation 6) that leads to the generation of a dielectrophoretic force (equa-

tion 10) applied to the particle as a gradient on the electrical field is present as illustrated 

in Figure 10.  

 

 
 

Fig 10.  Modeled electric potential gradient above conductor surfaces shown in Figure 8. 
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Figure 11 depicts the 3D model outcome at three different instances on the trajectory of a 

5-μm dust particle subject to an electrostatic force (equation 4) and viewed from xyz vol-

umetric and xy planar perspectives.  

As all models shown above, here the multiphase AC potential conditions are the same as 

those illustrated in Figure 2. Figure 11a is at the starting instant (t=0) having the particle 

idle and in its initial position, In Figure 11b, a snapshot at 0.005-second instant, the parti-

cle is slighted levitated floating on the EDTW and moving away from the its initial con-

ditions. In Figure 11c, a snapshot at 0.01-second instant, the particle jumped from the 

EDTW and completed removed from the zone where the set of the three multiphase spiral 

conductors are. As stated above the model is set to stick the particles that hit the lateral 

walls that serve as geometric domain boundaries.  

 

 
 

Fig 11. Modeled 5-μm dust particle trajectory viewed from xyz volumetric and xy planar 

perspectives. The particle is subject to an electrostatic force. 
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IV. CONCLUSION 

NASA ESPL at Kennedy Space Center has built a comprehensive 3D modeling on super-

ficial dust removal via electrostatic and/or dielectrophoretic forces for extraterrestrial 

exploration mission. The model is intended to optimize the implementation of the dust 

mitigation technology developed at the ESPL in terms of the geometry of the conductor 

array, power requirements, and particle removal efficiency. 

The next step on the development of this NASA ESPL model is its validation using dif-

ferent experimental conditions under gaseous atmosphere (air/CO2) and vacuum as well 

as different conductor geometries and conductor-array setups. The validation process will 

be conducted by recording the trajectory of known-size Simulant Martian particles via a 

high-speed high-resolution camera to not only track the trajectory of the particle but also 

estimate its velocity through all the trajector 
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