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The NASA Environmentally Responsible Aviation (ERA) Project explored enabling 

technologies to reduce impact of aviation on the environment. One project research challenge 

area was the study of advanced airframe and engine integration concepts to reduce 

community noise and fuel burn.  To address this challenge, complex wind tunnel experiments 

at both the NASA Langley Research Center’s (LaRC) 14’x22’ and the Ames Research 

Center’s 40’x80’ low-speed wind tunnel facilities were conducted on a BOEING Hybrid Wing 

Body (HWB) configuration.  These wind tunnel tests entailed various entries to evaluate the 

propulsion-airframe interference effects, including aerodynamic performance and 

aeroacoustics. In order to assist these tests in producing high quality data with minimal 

hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were 

performed for everything from sting design and placement for both the wing body and 

powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact 

on vehicle aerodynamics.  This paper presents a high-level summary of the CFD simulations 

that NASA performed in support of the model integration hardware design as well as the 

development of some CFD simulation guidelines based on post-test aerodynamic data.  In 

addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, 

USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel 

experimental setup and execution.  

 

Nomenclature 

A   = Effective projected vehicle area 

CD   = Drag coefficient 

CL   = Lift coefficient 

Cm   = Pitching moment coefficient 

Cmα   = Pitching moment coefficient curve slope variation with angle of attack, /deg. 

CT   = Thrust  coefficient 

LB      =  Body Length 
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LB_REF     =  Reference Body Length 

L/D    = Lift-to-drag ratio 

Re   = Reynolds Number 

Rcref    = Reynolds number based on cref, U cref / ν 
Swet   =    Wetted vehicle surface area  

St   = Strouhal number 

U   = free stream reference velocity 

M∞    = Free-stream Mach number 

α    = angle of attack, deg. 

µ    = viscosity 

ν    = kinematic viscosity, µ/ρ 

ρ    = density 

ρ∞    = Free-stream density 
 

Acronyms 

ARC Ames Research Center 

CFD 

CAD 

Computational Fluid Dynamics 

Computer Aided Design 

ERA 

EPNdB 

FTN 

Environmentally Responsible Aviation 

Effective Perceived Noise level in decibels 

Flow Through Nacelle 

HWB Hybrid Wing Body 

LaRC Langley Research Center 

LM Langtry-Menter transitional turbulence model 

NASA National Aeronautics and Space Administration 

PAI Propulsion Airframe Integration 

SA 

SST 

TPS 

Spalart-Allmaras turbulence model 

Shear Stress Transport turbulence model 

Turbine Propulsion Simulator 

I. Introduction 

     Achieving ultra-efficient commercial vehicles is one of NASA’s Aeronautics Research Mission Directorate’s 

technology goals. The Environmentally Responsible Aviation (ERA) project was formed to help achieve this goal by 

exploring ways to reduce the impact of aviation on the environment specifically in the areas of noise, emissions and 

fuel burn1,2.  To this end, a campaign of wind tunnel experiments was performed on a 5.75% scale model of the 

BOEING Hybrid Wing Body (HWB) configuration 0009GM (Fig. 1) for evaluation of engine/airframe operability in 

the following four model configurations: Flow Through Nacelle (FTN), Ejector, Turbine Propulsion Simulators (TPS), 

and Aeroacoustics.  

 NASA’s experience with modern wind tunnel testing has shown that utilizing Computational Fluid Dynamics 

(CFD) to help guide and answer questions before, during, and after a test has been a valuable endeavor.  This 

experience has most recently been demonstrated in NASA’s Orion program with its successful Pad Abort-1 and 

Exploration Flight Test-1.  Within the Orion program, an Aerosciences project consisting of both simulation and 

experimental experts worked in conjunction toward a complimentary set of wind tunnel tests and CFD simulations 

that contributed to the success of these two flight tests.  The recent HWB test campaign was a similarly successful 

cross-center, cross-discipline, and cross-partner collaboration. 

II. Efficient use of Multiple CFD solvers 

The following section includes details on the different CFD solvers and explains how each tool was used to provide 

insight into the ERA wind tunnel experiments; specifically in the area of predicting aerodynamic interference due to 

model support structures, as well as assessing alternate support options that reduced unwanted effects.   

NASA’s access to high-end computing (HEC) and modern CFD solvers has enabled the use of computational 

simulations in the development, design and testing of a variety of aerospace vehicle studies.  While there are some 

limitations on how quickly these CFD simulations can be generated, due to preparation time required for CFD-ready 

CAD/geometry, the substantial HEC resources available within NASA has made it possible to utilize higher-fidelity 

CFD simulations to provide insight into the complex aerodynamic flows studied in the HWB wind tunnel campaign.   
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Our experience has shown that the use of multiple CFD tools with both varying and duplicative fidelity provides 

a basis for CFD uncertainties and is a valuable approach to identifying CFD implementation errors.  Furthermore, 

each CFD tool has its own strengths that enable addressing various questions ranging from preliminary assessments 

to final flight vehicle aerodynamic database creation.  For example, when a wind tunnel test is being formulated for 

internal flow problems, an unstructured viscous CFD solver tools such as the commercial tool STAR-CCM+3, which 

has a very robust CAD-to-mesh capability, has been invaluable in quickly generating the complex mesh geometries 

and predicting the associated flow solutions.  In the case of generating large flight databases, such as the aerodynamic 

databases required for the guidance, navigation, and controls assessment for NASA’s Orion vehicle, the use of CFD 

tools such as NASA’s OVERFLOW4 and FUN3D5 solvers becomes increasingly valuable as they provide higher-

order methods that are easily scalable on supercomputers. Hundreds of OVERFLOW and FUN3D simulations can 

also be generated simultaneously due to freedom from licensing restrictions. 

A. Geometry and Mesh Generation 

Properly modeling the geometry in a CFD simulation is an absolute necessity, especially in regions of attached 

flow.  Therefore, the fidelity of the CFD geometry must be as precise as possible.  This requires the CFD to be based 

on accurate CAD definitions of the vehicle of interest, including all model support structure in the case of a wind 

tunnel experiment.  However, there are sometimes benefits to considering geometry simplification in regions where 

the flow is separated, such as around support structures that may not affect the vehicle aerodynamics but can introduce 

overly complex geometry and unsteadiness in the flow requiring expensive time-resolved simulations.  This balance 

of geometry fidelity versus simplification requires experience and careful assessment of the effects at select flow 

conditions for the problem at hand.   

At times, it is beneficial to model all the complex details of the geometry including support structures, especially 

with CFD tools that lend themselves to this approach, such as unstructured CFD solvers that simplify mesh generation.  

The commercial CFD solver, STAR-CCM+3, is one such tool that was heavily utilized in the process of answering 

key question raised by the experimentalists for the various wind tunnel entries.   

Figures 2 through 5 show examples of the typical meshes generated for each of the four CFD solvers used.  The 

OVERFLOW flow solver utilized a system of overset structured grids (Fig. 2) developed with the chimera grid tools 

(CGT)6 version 2.1q and overset grid connectivity generated by Pegasus version 5.27.  The y+ boundary layer normal 

grid spacing at the wall was approximately 1.0 or less.  The STAR-CCM+ flow solver utilized polyhedral meshes 

(Fig. 3) that were directly generated from CAD with a y+ boundary layer normal grid spacing value equal to 

approximately 1.0 or less for the first prism layer off the no-slip wall boundaries.  The USM3D flow solver utilized a 

system of tetrahedral, cell-centered, finite volume unstructured meshes (Fig. 4) created by the TetrUSS GridTool8 

software and the volume mesh generation software, VGRID/POSTGRID9,10, which maintained a y+ boundary layer 

wall normal grid spacing value of approximately 0.5 or less.  The FUN3D flow solver utilized a system of unstructured 

grids based partially on the same surface mesh as those used in STAR-CCM+.  When surface geometry modifications 

to the baseline meshes were needed, the commercial Pointwise11 mesh generation software version 17.3R1 was used.  

All unstructured volume meshes for FUN3D were generated using the Advancing-Front Local-Reconnection 

(AFLR3)12 software and maintained a boundary layer y+ normal wall spacing value equal to approximately 1.0 or less. 

 

 
Figure 1. HWB model cruise configuration in NASA LaRC 14'x22' wind tunnel. 
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Figure 2.  Overset grids of the HWB in the LaRC 14’x22’ wind tunnel facility. 

 

   
Figure 3. STAR-CCM+ Unstructured polyhedral mesh of the HWB.  

 

    
Figure 4. Unstructured USM3D mesh of the HWB.  

 

   
Figure 5. Unstructured FUN3D mesh of the HWB.  
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B. Turbulence Modeling 

 All of the CFD solvers used during this study were run using the Reynolds-Averaged Navier-Stokes modeling 

option and an associated turbulence model.  The turbulence modeling had a significant effect on the predicted 

aerodynamics of the HWB, especially as the onset of turbulent boundary layer separation affected the maximum lift 

at high angles of attack. Several turbulence modeling options were explored amongst the various CFD solvers, 

including the Spalart-Allmaras13 (SA), Menter's SST14, and Langtry-Menter15 models.  The Langtry-Menter model 

was only used to provide a laminar-turbulent transition capability to assess tripping strategies (summarized in the 

“Trip dot placement selection” section below).   

 In addition, simulations of high-lift configurations on conventional wings often benefit from various forms of 

"rotation and curvature" (RC) corrections to the turbulence models16.  The SA-RC model17 was evaluated in some 

simulations, and the RC option was also explored within the SST model for some initial simulations. The Quadratic 

Constitutive Relation (QCR) model18,19 was also considered. 

 While multiple turbulent modeling options were assessed, the majority of results were produced assuming "fully 

turbulent" flow using the native implementation of the favored turbulence model in each CFD solver for these flows.  

The majority of predictions done with OVERFLOW used the SA model.  For STAR-CCM+, the SST model was 

preferred.  For FUN3D and USM3D, the SA model was principally used. 

C.  CFD Solver Options  

Simulations generated by CD-adapco’s STAR-CCM+ were run by NASA Ames Research Center using the 

Reynolds-Averaged Navier-Stokes, K-Omega SST (Menter) turbulence model based on Version 9.04.009 of the code 

with the segregated solver and Roe flux, 2nd order scheme.  

Simulations generated by OVERFLOW, developed and distributed by NASA Langley Research Center, were 

generated by NASA Ames Research Center with spatial discretization of the Euler terms using the third-order HLLC 

upwind scheme. The time integration employed depended upon the nature of the solution. For most of the lower angle 

of attack simulations, runs were started with the "steady-state mode" of integration and simple time-stepping. 

Simulations that converged to a steady-state flow solution using this option were considered complete. At higher 

angles of attack, many flows exhibited asymptotic unsteadiness, and these were solved using the “time-accurate 

mode,” with subiterations inside the outer second-order backward-difference time integration algorithm. Viscous 

fluxes were computed with second-order central spatial discretization. Solutions were computed with both the SA and 

SST models, which were solved with the same discretization accuracy as the mean flow variables.  

Simulations generated by USM3D20, developed by NASA Langley Research Center as part of the NASA 

Tetrahedral Unstructured Software System21 (TetrUSS), were run by NASA LaRC with the implicit Gauss-Seidel 

scheme and the Roe flux-difference splitting scheme. The code was run with first-order spatial accuracy until the 

residual dropped two orders of magnitude.  USM3D then automatically switched to generate second-order spatially 

accurate solutions until full convergence.  The SA turbulence model was used for all of the flow conditions. 

Simulations generated by FUN3D5, developed and distributed by NASA Langley Research Center, were run by 

NASA Ames Research Center utilizing version 12.7 with a node-based, finite-volume spatial discretization. The Roe 

flux-splitting scheme was used for the Euler terms.  The time integration employed depended on the nature of the 

solution. For most of the lower angle of attack simulations, solutions were generated using the "steady-state mode" of 

integration, with a point-implicit simple time-stepping method. In “steady-state mode,” FUN3D was initially run with 

first-order spatial accuracy until the residual dropped three orders of magnitude, at which point the spatial accuracy 

was increased to second-order.  At higher angles of attack, many flows exhibited asymptotic unsteadiness, and these 

were solved using the “time-accurate mode,” with subiterations inside the outer time integration algorithm. All 

solutions were computed with the SA turbulence model. 

D. CFD Simulation Quality Assessment 

When using CFD to assess a large matrix of flow conditions and/or configurations, the management, post-

processing, and quality assessment of the numerous and large data sets can become burdensome.  To alleviate this 

load in the current work, we leveraged tools developed under the NASA Orion Aerosciences and previous ARMD 

projects.  Some such tools included automated convergence scripts that were used to monitor and control unsteady 

flow simulations and an HTML-based visualization software referred to as the ‘miniwall’.  Utilizing the miniwall, we 

were able to automate the visualization of a variety of results from convergence plots to surface pressure contours in 

a logical matrix format. A depiction of the miniwall tool and one of its screens is shown in Fig. 6.  The generation of 

the CFD images of interest can be obtained using the plotting software of choice, but careful scripting of this process 

is necessary to generate the required file tree structure that enables the miniwall to automatically populate its matrix 

array of windows.  Essentially, it mimics a wall of video monitors similar to what the NASA HEC facility refers to as 
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the ‘hyperwall’22.   Through this process, we were able to manage the various CFD simulations being run, perform 

quality assessments, and more efficiently provide feedback to the project on various requested CFD wind tunnel 

support tasks.    

 

 
Figure 6. Sample miniwall application. 

III. CFD Wind Tunnel Support 

The use of CFD to guide the design and selection of the various wind tunnel support structures and assess their 

interference effects on the overall vehicle aerodynamics (including producing aerodynamic increments to be used to 

adjust wind tunnel data) is highlighted in the following section. 

A.  Sting Configuration and Placement 

To help determine the proper sting configuration for the HWB model, the NASA CFD group evaluated four sting 

configurations to guide the down selection to one that minimized its aerodynamic influence on the HWB during 

testing.  These were all simulated in free-air to remove the complexity of modeling the walls.  Fig. 7 depicts the four 

sting options the project considered: 1) long aft sting, 2) long forward sting, 3) short aft sting, and 4) short forward 

sting.    Where ‘forward’ and ‘aft’ refers to the sting attachment distance relative to the nose of the vehicle; the ‘short’ 

and ‘long’ refers to the distance of the sting elbow below the vehicle.    

The four sting configurations were initially simulated with OVERFLOW and the integrated coefficients for lift 

(CL), drag (CD) and side (CS) force along with roll moment (Cl), pitch moment (Cm) and yaw moment (Cn) are shown 

in Figs. 8 and 9.  A baseline configuration without a sting, referred to as ‘clean’, was used to provide the basis to 

assess the sting increments.   The HWB geometry configuration that was analyzed in these simulation was based on 

the Boeing HWB 0009D cruise wing configuration in free air (no wind tunnel walls).  For the zero sideslip results in 

Fig. 8, the largest force and moment increment from the baseline ‘clean’ configuration are seen in the ‘long aft’ and 

‘short aft’ sting configurations (specifically in the drag, lift, and pitch moment coefficients).  Similar increment trends 

are seen in the results for the 20 degrees sideslip cases shown in Fig. 9.   
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(a) Long Aft Sting            (b) Long Forward Sting 

 

 
(c) Short Aft Sting            (d) Short Forward Sting 

Figure 7. Wind tunnel sting configurations considered. 

 

 

 
 

 

 
Figure 8. OVERFLOW sting configuration force and moment comparison for 0 degree sideslip. 
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Figure 9. OVERFLOW sting configuration force and moment comparison for 20 degree sideslip. 

 

 The predicted integrated forces and moments indicated that the long forward and short forward stings exhibited 

the least influence on the overall vehicle load.  However, it was still not clear which of the two forward stings to 

choose from as they both had nearly identical increments.  In order to further investigate this, plots of delta surface 

pressure coefficient (∆Cp= Cp_support – Cp_clean) contour were generated to show the differences in Cp between a given 

sting configuration and the clean configuration for both the long forward and short forward sting at an angle of attack 

of 12 degree with 0 and 20 degrees side slip.  The lower surface delta Cp contours are shown in Fig. 10 and the upper 

surface contours are shown in Fig. 11.  This delta Cp approach provided a good way to visualize the local flow on the 

surface due to the influence of features such as the given sting configuration.  The contour levels are plotted to show 

positive pressure delta in red and negative pressure delta in blue.  The goal is to achieve zero delta values, shown as 

nearly white contours in the plots, indicating minimal interference due to the presence of a given sting configuration.  

Most of the vehicle lower surface has near-zero delta Cp’s, except around the location where the sting is present.  Fig. 

11 shows larger visual deltas appearing on the upper surface of the wing near the wing crank, with the largest deltas 

coming from the ‘Long Forward’ sting. 

Additional CFD simulations were generated using the USM3D solver to provide a secondary check on the 

OVERFLOW results.   Figure 12 shows the USM3D-predicted delta Cp distribution on the lower surface for all four 

stings options at an angle of attack of 10 degrees with 0 degrees sideslip.  The largest difference is the increased 

pressure upstream of the aft sting configurations which spreads out onto the wing.  This increased pressure on the 

lower side of the wing is consistent with the higher lift predicted by OVERFLOW as shown in the load coefficient 

plots of Fig. 8.  Comparison of the long and short forward stings showed that the blockage of the long forward sting 

strongly influenced the flow on the upper wing surface.  In addition, the wake generated by the long forward sting is 

larger, as indicated by the Mach contours along the symmetry plane of Fig. 13.   

Based on these CFD findings, the recommendation was to use the short forward sting configuration for all the 

testing in both the 14’x22’ and 40’x80’ wind tunnels.  
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Long Forward: α=12°, β= 0°       Short Forward: α= 12°, β= 0° 

     
 

Long Forward: α=12°, β= 20°       Short Forward: α= 12°, β= 20° 

     
Figure 10. OVERFLOW long vs. short forward sting lower surface ∆∆∆∆Cp=(Sting– Clean). 

 

     Long Forward: α=12°, β= 0°      Short Forward: α= 12°, β= 0° 

       
     

     Long Forward: α=12°, β= 20°     Short Forward: α= 12°, β= 20° 

       
Figure 11. OVERFLOW long vs. short forward sting upper surface ∆∆∆∆Cp=(Sting– Clean). 
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 Long Forward: α=10°, β= 0°                                Short Forward: α= 10°, β= 0° 

       
 

 Long Aft: α=10°, β= 0°                             Short Aft: α= 10°, β= 0° 

      
Figure 12. USM3D sting effects on lower surface ∆∆∆∆Cp=(Sting– Clean). 
 

 Long Forward: α=10°, β= 0°                   Short Forward: α= 10°, β= 0° 

  
Figure 13. USM3D long vs. short forward sting wake comparisons. 

B.  Ejector Selection 

The NASA CFD group also evaluated two ejector configurations, which were designed to produce flow distortion 

over the wing equivalent to that expected on a full scale flight vehicle.  The two ejector options included a baseline 

ejector (referred to as ‘eject_r’) and a long ejector (referred to as ‘eject_r1x2’), as shown in Fig. 14. The goal was to 

determine which of the two ejector concepts would have the least influence on the HWB aerodynamic performance 

during wind tunnel testing.  

Similar to the sting selection study, delta surface pressure coefficient (∆Cp) plots were used to compare the 

influence of the two ejector configurations against a baseline configuration.  However, it should be noted that due to 

an oversight the ejectors simulations were generated with the addition of a baseline leading edge Krueger flap which 

was part of the planned configuration buildup.  Furthermore, the project was under a deadline to down select to a 

preferred ejector configuration and so rather than running additional CFD of the HWB with the Krueger only for the 

baseline, it was determined that the HWB simulations with the ‘short forward’ sting from the sting study would be 

sufficient for use as the baseline.  This meant that the ∆Cp results would include influences due to both the ejector 

configuration and the Krueger flaps as shown by the high ∆Cp’s on the wings in Figs. 15.  In order to remove the effect 

of the Krueger, ∆Cp contours were generated between the two ejector solutions (∆Cp= Cp_ eject_r1 – Cp_eject_r1x2) as 

plotted in Fig. 16. These contours showed that the net ejector influence occurred on the upper surface of the HWB 

beneath the ejectors and that the short ejector created higher pressure coefficients as indicated by the red contour levels 
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in Fig. 16 and were consistent with the higher pressures at the same location for the short ejector as shown in Fig. 15a.  

This higher pressure trend was attributed to the downstream movement of the tapered section for the long ejector (see 

Fig. 14).  Based on these findings, the recommendation was to use the long ejector for all the wind tunnel ejector 

entries.  
 

 
   a) short “eject_r1”       b) long “eject_r1x2” 

Figure 14. HWB wind tunnel ejector configurations considered. 

 

        
 a) Short ejector: αααα=10°, ββββ= 0°                            b) Long ejector: αααα= 10°, ββββ= 0° 

Figure 15: OVERFLOW ejector configuration upper surface ∆∆∆∆Cp=(Ejector_Config.– Clean). 
 

Short ejector – Long ejector: α= 10°, β= 0° 

                        
Figure 16. OVERFLOW Upper surface ∆∆∆∆Cp between the two ejector configurations  ∆∆∆∆Cp=( eject_r– 

eject_r1x2). 

C.  Trip Dot Selection and Placement 

 The wind tunnel test program was designed to investigate low-speed configuration aerodynamics of the HWB 

under takeoff and landing conditions, and these included typical high angles of attack and sideslip that can result in 

separated flow on the vehicle. Effective tripping of the wind tunnel model boundary layers is critical to creating 

turbulent flow over most of the model at the wind tunnel test conditions (M = 0.2, Rcref = 5.27 x 106). One particular 

concern was the effective tripping of the boundary layers that traverse the highly-swept and blunt inboard portion of 

the HWB configuration. Flow from this area continued over the body upper surface towards the engines, and any flow 

separations could have important PAI consequences. Therefore, laminar or transitional flows on the body of the wind 

tunnel model could result in measurements that do not accurately represent full-scale vehicle performance.   

 Two CFD codes were used to guide the placement and sizing of transition-forcing boundary-layer trip strips for 

this experiment. Validated CFD transition prediction technology for configuration aerodynamics is not well 
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established, and a hybrid analysis approach was adopted. The first part of the analysis was focused on determining the 

forced-transition strip location, and fully turbulent simulations from the unstructured code USM3D21 with the SA 

turbulence model13 were used. This analysis focused on the longitudinal onset of adverse pressure gradients, and trip 

locations were identified slightly upstream of these locations. The second part of the analysis was focused on 

determining trip-dot heights, and transitional simulations from the overset code OVERFLOW4 with the Langtry-

Menter transitional boundary-layer model15 were used. These solutions provided laminar boundary layers in the 

proposed trip-strip region, and these boundary layers were interrogated to guide the trip-dot sizing. Details from the 

OVERFLOW/LM simulations showed it predicted the transition front to be downstream of the trip locations 

determined from the USM3D/SA analysis.  This provided good confidence that the location determined by 

USM3D/SA were conservative.  Two trip patterns resulted from this analysis, one for low to moderate angles of attack, 

and the other for moderate to high angles of attack. Both patterns were comprised of segmented straight lines with 

fixed dot heights on any one segment. The trip dots were thus very practical to put on the model. The change from the 

low-α to the high-α patterns coincided with a major model hardware change, so the impact on tunnel schedule was 

small.  

Infrared thermography was used to verify the trip effectiveness as shown in Fig 17, and the tripping was adopted 

for the test campaign in the LaRC 14’x22’ and ARC 40’x80’ low-speed wind tunnels.  A few photographs of the trip 

dots on the model are shown in Figure 18.  

  
       a) With trip dots 

 

   
       b) NO trip dots 

Figure 17. Experimental thermal images of trip dots effectiveness on HWB (from above and behind model)  

 

    
   a) Lower surface trip strip pattern        b) Trip dot detail 

Figure 18. Trip dot application to the ERA/HWB model in the 14’x22’ wind tunnel. 

Flow Direction 

Flow Direction 

Lighter swath = transition due 

to presence of flap bracket 

Lighter swath = transition due 

to bug on nose 

Darker areas on model = laminar flow 
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D. Aeroacoustic Array Placement and Configuration Assessment 

A key system level metric of the project was to demonstrate reduced component noise signatures that would 

contribute to a 42 EPNdB Stage 4 noise margin for the aircraft system23.  No direct acoustic measurements of the 

HWB model were originally planned as part of the test program, as all of the noise estimates were to be done 

computationally.  However, the re-planning of the project to the NFAC 40’x80’ wind tunnel (after the main drive 

failure in the 14’x22’) afforded an opportunity to acquire experimental acoustic data to better refine noise estimates. 

A new traversing array support was proposed for installation below the portside wing of the HWB in order to measure 

Krueger flap noise for a number of configurations (Fig. 19).  The array support was proposed because the floor of the 

40’x80’ test section was thought to be too far from the model for accurate noise measurements. A post was used to 

support the placement of a 50”x80”x4” acoustic array underneath the portside wing, and a computational effort was 

undertaken to assess and help minimize the aerodynamic influence of the acoustic array mounted in proximity to the 

wind tunnel model.  Three vertical and three horizontal array placement options were analyzed.  The following three 

vertical locations were considered: 1) 24” below the portside wing, 2) 48” below, and 3) 96” below the portside wing.  

These vertical positions are depicted in Fig. 19.  A single vertical height was selected from these three options and 

then three horizontal locations were evaluated based on three directivity angles of 60°, 90° and 120°.  The 90° 

directivity angle located the array directly below the reference point underneath the wing, while the 60° angle is 

forward of the wing, and 120° angle is aft.  

 

     
a) Array at 24 inches below  b) Array at 48 inches below   c) Array at 96 inches below 

Figure 19. Acoustic array vertical placement considered for 40’x80’ WTT. 

 

STAR-CCM+ flow simulations were used to compute the force and moment increments caused by the vertical 

acoustic array, using the no array solutions as the reference case.  These simulations included all of the associated 

support structure and 40’x80’ wind tunnel walls.  STAR-CCM+ was used due to its ability to rapidly generate and 

assess the many geometries being considered for the various acoustic array assembly locations. The resulting flow 

field predictions were used by the experimentalists to guide the wind tunnel model design setups in the 40’x80’ wind 

tunnel.  The CFD results showed that the force and moment coefficients were generally unaffected by the array at the 

48” and 96” vertical locations, as shown in Fig. 20.  The pitching moment showed the most sensitivity to array post 

height.  When the acoustic array was placed at the 24” separation location, there was a marked change in the pitching 

moment.  At the 48” location, that increment appeared to be acceptably small. At the 96” location, no increment was 

present when compared to the no-array results.   These predictions were consistent with the measured pitching 

moments from the wind tunnel test as shown in Fig. 20b.  Note, the axes of both plots in Fig. 20 use the same minimum 

and maximum values for angle of attack and pitching moment coefficient. 

 

  
      a) STAR-CCM+ Simulations        b) 40’x80’ Wind tunnel data 

Figure 20. Vertical array placement effect on HWB pitching moment. 
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In order to take a closer look at the influence of these array locations on the HWB, sectional surface pressure 

coefficient at various span wise locations were compared to those without the array for the 24” and 48” vertical array 

separations, as shown in Figs. 21 and 22.  These results showed slight differences in the pressures around the leading 

edge Krueger flap and the main wing for the 24” array location (Fig. 21).  At the 48” position the pressures are nearly 

identical, as shown in Fig 22.  From these results, the project selected the 48” position as the optimal separation 

distance of the array support platform from the model and used this position for the directivity angle selection analysis.   

In order to evaluate the horizontal placement of the array, the FUN3D flow solver was run at NASA Ames 

Research Center, using the three directivity angles of 60°, 90° and 120° configurations.  FUN3D meshes were obtained 

using the STAR-CCM+ polyhedral surface meshes, which were converted into surface triangles using Pointwise and 

then prismatic volume meshes were generated using AFLR.  This enabled the CFD group to apply two different CFD 

solvers on the same problem simultaneously using similar meshes, and providing a good opportunity for code-to-code 

comparisons.   

The 60°, 90° and 120° directivity angle acoustic array locations at 48” below the portside wing are shown in Figs. 

23, 24 and 25, respectively.  Also include in these figures are surface contours plots of delta pressure coefficients 

(∆Cp) between the given array location solution and the no-array baseline solution predicted by FUN3D.   In order to 

closely investigate the influence of these array locations on the aerodynamics of the HWB, sectional surface pressure 

coefficient distributions at various span wise location were compared to those without the array for the 60°, 90° and 

120° acoustic array locations, as shown in Figs. 26, 27, and 28.  These figures indicated that there was no significant 

influence on the surface pressures due to the array locations. All of the Cp distributions appeared to be identical to the 

no-array baseline pressure distributions. Armed with this information, the experimentalists and acousticians were able 

to proceed with confidence, knowing that the acoustic array placed 48” below the portside wing at the three directivity 

angle locations should not affect the flow around the HWB.  

 

  

  
Figure 21. Star-CCM+ wing sectional Cp with array 24” below and without array at αααα=12°. 
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Figure 22. Star-CCM+ wing sectional Cp with array 48” below and without array at αααα=12°. 

 

 

 

 

 

  
Figure 23. FUN3D 60° array placement surface ∆∆∆∆Cp=(Array60° – noArray) at αααα=12°, ββββ=0°. 
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Figure 24. FUN3D 90° array placement surface ∆∆∆∆Cp=(Array90° – noArray) at αααα=12°, ββββ=0°. 

 

  
Figure 25. FUN3D 120° array placement surface ∆∆∆∆Cp=(Array120° – noArray) at αααα=12°, ββββ=0° 

  

  
Figure 26. FUN3D 60° array sectional Cp portside wing comparisons at αααα=12°, ββββ=0°. 
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Figure 27. FUN3D 90° array sectional Cp portside wing comparisons at αααα=12°, ββββ=0°. 

 

 

 
Figure 28. FUN3D 120° array sectional Cp portside wing comparisons at αααα=12°, ββββ=0°. 



 
 

 

18 

E.  Sting Installation CFD support 

One of the key aspects of this project was that both the wind tunnel experimentalists and the CFD analysts worked 

side-by-side through the entire project.  This made for a well-informed team with firsthand knowledge of everything 

from test setup and the intricacies of data measurements, to the details of various wind tunnel correction strategies for 

processing the data for post-test comparisons with CFD.   

One example of this type of close collaboration was demonstrated during the 40’x80’ model setup, when it was 

observed that the sting collar adapter used to mate the model sting to the 40’x80’ mounting hardware produced a large 

diameter step increase as shown in Fig. 29.  Because experimentalist had CAD available, the CFD group was able to 

perform simulations to show the impact of this step on the flow field about the HWB model.    

 

 
Figure 29. Initial sting adapter installation in the 40’x80’ wind tunnel entries. 

 

 Simulations using the STAR-CCM+ flow solver for the sting adapter based on the following configurations were 

performed: 1) the original step collar, 2) a faired collar developed with the STAR-CCM+ geometry tool, and 3) no 

collar showin in Fig 30.   Figure 31 shows the effect on pitching moment due to the three collar configurations.  The 

original step collar solution produced higher pitching moments with a sharp increase at high angles of attack as 

compared to the no collar result.  The pitching moments from the faired collar solutions overlaid the no collar results 

up to fairly high angles of attack.  These results provided the motivation that there was a need to fair the sting 

transition into the 40’x80’ strut mount assembly. Fig. 32 shows how the experimentalists achieved this. 

 

c    
   a) Original step collar       b) Faired collar       c) No collar  

Figure 30: Sting collar adapter installation study for the 40’x80’ wind tunnel entries. 
 

 
Figure 31. Star-CCM+ 40’x80’ faired collar pitching moment comparison. 
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Figure 32. Final sting adapter with faired collar installed in the 40’x80’ wind tunnel. 

F.  Wind Tunnel Wall Corrections 
Pre-test CFD analysis was conducted to explore and compare the “classic” wind tunnel test corrections with CFD-

based predictions of the tunnel installation effects.  The “classic” corrections were applied to correct for blockage 

effects, buoyancy effects, strut interference effects and stream curvature effects24,25.  Both the CFD-based corrections 

and the classic corrections used the same correction methodology and equations.  Only the correction parameter values 

differed.  The CFD-based parameter were established based on a least-squares fit of the parameter values that best 

matched the CFD-predicted corrections.  The CFD-based corrections were only available for the 14’x22’ tunnels 

results. 

A series of tests of the same HWB model configuration in the 14’x22’ tunnel with the open and closed test section 

provided an opportunity to compare the classic and CFD-based corrections.  The correction methods are intended to 

correct the data for tunnel installations effects and provide “free-air” aerodynamic measurements.  The corrected data 

from the open and closed tunnel measurements of the same model configuration should therefore overlay each other.  

Figure 33 shows a comparison of uncorrected longitudinal force and moment data from a series of open and closed 

test sections experimental runs with the same landing Krueger model configuration.  The differences are most evident 

in the lift and drag at the higher angles of attack.   

 

 
Figure 33. Comparison of uncorrected open- and closed-tunnel longitudinal force and moment data for a 

landing Krueger configuration. 

 

Figures 34 and 35 show the same data sets corrected with the classic and CFD-based values, respectively.  Both 

methods provide an improvement in the matching of the open and closed tunnel measurements.  The CFD-based 

corrections were expected to provide a better match than the classic method.  A closer examination of the matching is 
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provided in Fig. 36, which shows the difference from the average of the three closed test section runs.  Figure 36 also 

shows that the match provided by CFD-based corrections was no better and in some cases slightly worse than 

 

 
Figure 34. Comparison of classic corrected open- and closed-tunnel longitudinal force and moment data for a 

landing Krueger configuration. 

 

the classic corrections.  Additional post-test CFD analysis including the NFAC test configuration comparison should 

provide greater insight into the test corrections and is worthy of further investigation. 

 

 
Figure 35. Comparison of CFD corrected open- and closed-tunnel longitudinal force and moment data for a 

landing Krueger configuration. 
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Figure 36. Comparison of the difference from the average of the three closed test section runs. 

IV. Lessons Learned and Simulation Guidelines 

The following section highlights a few of the most important lessons learned during the execution of the CFD 

wind tunnel support efforts. 

A. Support Post Unsteadiness  

Complex mounting hardware geometry, such as the 40’x80’ wind tunnel sting assembly shown in Fig. 37a, can 

result in unsteady, separated flow during a wind tunnel test. This unsteadiness can require computationally expensive, 

time accurate simulations, which may not actually influence the mean aerodynamics of the configuration of interest. 

Therefore, introducing simplifications to the geometry being simulated in order to eliminate unsteadiness in the flow 

solutions due to certain geometric features can greatly reduce computational expense without impacting the accuracy 

of the predicted mean aerodynamic quantities of the model.  A good example of this was the modeling of the HWB 

with the 40’x80’ model support system, which included a large diameter vertical post as shown in Fig. 37a.  CFD 

modeling of this original support post configuration (Fig. 37a) with FUN3D showed a low-level unsteadiness in the 

lift coefficient at 12 degrees angle of attack as shown by the solid blue lines of Figs. 38 and 39.  Preliminary assessment 

indicated a large unsteady wake behind the post.   

 

     
a) Original post       b) No post      c) Modified post 

Figure 37. 40’x80’ post geometry simplification.  
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Without the post, at these same conditions, the simulated HWB flow did not exhibit this type of unsteadiness.  In 

order to simplify the problem, the post was removed (as shown in Fig. 37b) to determine if averaged integrated loads 

would be affected.  FUN3D simulations of this ‘no-post’ configuration showed a reduction in lift and an increase in 

drag, as shown by the red dashed lines in Figs. 38 and 39, respectively.  This was attributed to changes in the flow 

around the HWB due to reduced blockage when the post was removed.  As an alternative to removing the post, a 

faring was added around the post in the CFD simulations as shown in Fig. 37c.  It should be noted that he wind tunnel 

vertical post was spiral-wrapped with a thick rope to disrupt coherent Strouhal shedding.  The CFD geometry 

modification was designed to achieve a similar end goal, via an alternate mechanism.  The modified post maintained 

the blockage effect but lessened the bluff body unsteady separated flow behind the post.  In addition to the faring, the 

complex geometry of the motor and jack screw mechanisms behind the sting were also removed. 

 

 
Figure 38. FUN3D HWB lift coefficient comparisons due to 40’x80’ post geometry simplification at αααα=12°.  
 

 
Figure 39.  FUN3D HWB drag coefficient comparisons due to 40’x80’ post geometry simplification at αααα=12°. 

 

These geometric modifications enabled FUN3D to converged to a steady state solution using the non-time-accurate 

mode and provided mean aerodynamic lift and drag coefficient that were within 0.5% of the averaged time-accurate 

simulation.  Furthermore, this non-time accurate steady state solution was approximately 50% of the computational 

cost required by the time-accurate solutions.  Table 1 lists the differences in the aerodynamic lift and drag coefficients.  

The ‘No post’ solution translated into an increase in drag of ~23 drag counts, while the modified post showed 

approximately a 1.3 drag count increase. These drag differences can be significant when using CFD results to guide  

 

Table 1. Effect of model support post modifications on CFD lift and drag predictions. 

 ΔCL % ΔCD% ΔDrag count 

no post -4.6% 6.4% 23.3 

modified post -0.53% 0.35% 1.3 



 
 

 

23 

the extrapolation from wind tunnel data to flight.  These geometry modifications also enabled FUN3D to conduct 

angle of attack and sideslip angles sweeps below stall with a non-time-accurate approach saving both CPU and wall 

clock time.   

B. High angle of attack CFD flow predictions 

An issue in CFD prediction accuracy emerged in the simulations of the flow near the onset of stall.  The following 

comments are based on FUN3D results at an angle-of-attack of 20 degrees using the SA turbulence model.  However, 

similar simulation results were obtained with Star-CCM+ using the SST turbulence model and with OVERFLOW 

using the SA model.   

Measurements of the HWB wind-tunnel model in the high-lift landing configuration with Krueger flaps deployed 

(Fig. 40a) indicated that boundary layer separation occurred on the upper surface of the wing at relatively high angles 

of attack, as shown by the slope change in the pitching moment and sudden decrease in the lift curves of Figs 33, 34 

and 35.  However, CFD solutions typically predicted that separation occurred at lower angles of attack.   

 

    
a) Landing Krueger HWB Configuration    b) Wind tunnel Krueger structural bracket 

Figure 40. Landing Krueger and close up view of structural bracket [from Ref. 2]. 

 

Analysis of the CFD solutions revealed a significant dependence of the flow separation on the time-integration 

process.  Solutions using the non-time accurate scheme, with simple spatially variable time stepping, tended to 

compare better with experimental measurements, but they approached an asymptotic state with low-level unsteadiness, 

as shown in Fig 41a.  Experience from prior CFD analyses indicates that time accurate integration should be used in 

these cases.  Therefore, additional solutions were computed using the second-order backward difference, time-accurate 

scheme, with a reasonably small time step and sufficient inner iterations to achieve good sub-iteration residual 

convergence.  These time-accurate simulations resulted in large separation downstream of the Krueger brackets (Fig. 

40b), resulting in approximately a 10% change in the integrated loads, which greatly diminished their accuracy in 

comparison to the experimental measurements as shown in Fig. 41b.  Similar behavior was also observed in 

simulations performed at ARC using Star-CCM+ and OVERFLOW.  Note, the lift coefficient y-axes of both plots in 

Figs. 41 use the same minimum and maximum values. 

  
    a) Non-time accurate result      b) Time-accurate result (DT=20, 25 subiterations) 

Figure 41. FUN3D lift dependency on time integration process for HWB landing configuration at αααα=20°. 

Experimental Value 
Experimental Value 

~10% drop in  
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A proposed explanation for the non-time-accurate result was that it created "resolved pseudo-turbulent" stresses 

that suppressed the separation bubble, and kept the flow attached. Unfortunately, this resolved pseudo-turbulence was 

computed with an algorithm that lacks time accuracy; thus, the pseudo-turbulence was not physical.  The strategy for 

understanding the issue was to pursue a truly time-accurate solution, which could be used as a "truth" solution for 

judging temporal inaccuracy in other solutions. The spatial discretization error was considered to be a constant, and 

assumed to not invalidate this approach.  Results of this study are given in Fig. 42 using the following four CFD time 

steps: 1) DT=0.02 with 3 subiterations, 2) DT=5.0 with 50 subiterations, 3) DT=10 with 100 subiterations, 4) DT=10 

with 20 subiterations.   

The rationale used to select these CFD time steps was to express them in terms of a physical vortex shedding 

Strouhal number (St) of 0.25.  This was done since the nominal Strouhal number of many unsteady separated wake 

flows tends to fall into a small range between 0.15 and 0.2526.  Further, the Strouhal number is defined as: St = fL/U.  

Where, f is the frequency, L is the relevant length scale, and U is the relevant velocity.  In order to express St in terms 

of a CFD time step (DT), the Strouhal number equation is rewritten such that the frequency f=1/DT, and the velocity 

U is set to freestream (U∞).  In FUN3D, the time step is normalized by the sound speed.  This will then yield what is 

referred to as the time step based Strouhal number (StDT) as follows: StDT = L/(DT*M∞) in terms of the FUN3D grid 

units.  Next, the ratio of the time step Strouhal number (StDT) to the physical Strouhal number (St) is used as a coarse 

measure of time integration accuracy.  For good time accuracy, this Strouhal ratio, StDT/St must be at least 20, as the 

second-order backwards-difference time-integration scheme requires roughly that many points per period assuming a 

simple sinusoidal oscillation for high accuracy.  An even higher ratio is needed if any part of the unsteady flow changes 

more rapidly than the gross features like integrated  loads, and this is very common. Thus, the ratio of Strouhal 

numbers, StDT/St should be 20 or greater, by an unknown amount, to achieve good time accuracy. 

The implication of time accuracy then depends on the relevant length scale in the region of interest.  Two examples 

relevant to this study at M∞ = 0.2 are discussed, and others can be constructed similarly.  For the Krueger structural 

brackets (Fig 40b), with a reference length of L = 0.6”, and a time step of DT = 1, the StDT = 3.  This yields a Strouhal 

ratio StDT/St = 12, assuming a vortex shedding St = 0.25, which is a low ratio value and is likely to have poor time 

accuracy.  At a DT = 10, the time step yields a StDT = 0.3 which nominally matches the bracket's vortex shedding 

frequency (St = 0.25) and yields a Strouhal ratio StDT/St = 1.2, which would destroy any time accuracy around the 

Krueger structural bracket HWB's aerodynamics.  A second phenomenon of interest is unsteadiness in the separation 

bubble which was observed to form on the wing's upper surface, and nominally had a characteristic reference 

dimensional length of L ~ 10".  In this case, a time step of DT = 1 gives StDT = 50 and StDT/St = 200, which suggest 

that this DT=1 would provide very good time accuracy; at DT = 10, StDT = 5 and StDT/St = 20, which would 

compromise the time accuracy somewhat, principally in the rapid details of the flow.  At a DT = 50, StDT = 1 and 

StDT/St = 4, therefore any unsteadiness at the nominal physical Strouhal frequency (St=0.25) would be extremely 

damped and unresolved.  Based on these principles, several simulations were conducted at a range of time steps as 

shown in Fig. 42. Simulations were initially run at a DT = 0.02 (red line) and DT = 5 (blue line) in an attempt to best 

resolve the smaller scale unsteady shedding directly downstream of the blunt Krueger structural brackets (Fig. 40b). 

Due to computational and time constraints, these simulations were prematurely concluded and a simulation with a DT 

= 10 (green line) was run until a definite repetitive unsteady behavior was achieved. Note that although the DT = 0.02 

and DT = 5 simulations did not run as long as the DT = 10 simulation, the initial lift histories all show excellent 

agreement. An additional simulation at DT = 10 (dashed orange line) was run with 10% as many subiterations as the 

aforementioned DT = 10 simulation to examine the effect of subiteration convergence. The lift coefficient visibly 

drops by ~10% when 10 subiterations are used at each outer time step.  Figures 43a and 43b show the inner iteration 

residual drop for the DT = 10 with 10 subiterations and DT = 10 with 100 subiterations simulations, respectively.  

While typical inner iteration residual convergence of two orders of magnitude could be considered sufficient, as seen 

in the DT=10 with 10 subiterations (Fig 43a), the integrated lift coefficient history results of Fig. 42 demonstrated that 

this was insufficient.  The DT=10 with 100 subiteration residuals convergence of  Fig. 43b, showed an asymptotic 

convergence with approximately 4 orders of magnitude drop in residuals, and the integrated lift compared much better 

with experimental lift results, as shown in Fig. 42.   

Another method used to check the accuracy of the outer time step was to verify that the inner iteration forces and 

moments converged to an asymptotic value.  This was done for the total lift force of the HWB computation as shown 

in Fig. 44a for the DT = 10 with 10 subiterations and in Fig. 44b for the DT = 10 with 100 subiterations. These results 

indicated that 10 subiterations appeared to reach an asymptotic convergence, however based on the comparison in Fig. 

42, the DT=10 with 10 subiterations was insufficient in providing a good comparison with the experimental value.   It 

should be noted that the version of the FUN3D code utilized in this study did not have the option to assess the inner 

iteration of the viscous force alone which would be much smaller and could provide a better means for verifying the 
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convergence of the boundary layer for these type of flows.  Because of this it was believed that an alternate 

convergence check for these flows was to verify that the inner iteration of the overall residual reached an asymptotic 

state as shown in Fig. 43b which required 100 subiterations for a DT=10. 

 

    
Figure 42. CFD-RANS time accuracy study effect on Lift for the HWB landing configuration at αααα=20°. 
 

                
     a) DT=10, 10 subiterations        b) DT=10, 100 subiterations 

Figure 43. FUN3D Time accurate residual subiteration convergence for HWB landing configuration at αααα=20°. 

 

    
     a) DT=10, 10 subiterations        b) DT=10, 100 subiterations 

Figure 44. FUN3D Time accurate integrated lift coefficient subiteration convergence for HWB landing 

configuration at αααα=20°. 
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In order to better understand how the flow differed between the two DT=10 simulations with 10 and 100 

subiterations, instantaneous surface streamlines were saved at the end of each simulations as shown in Fig. 45. The 

blue contours indicate reversed flow in the separated regions. Note, the separation bubble directly downstream of the 

second and third most inboard structural bracket for the DT=10 with 10 subiterations, shown in Fig. 45a, is much 

larger than the DT=10 with 100 subiteration result of Fig. 45b. This larger observed separation bubble based on the 

10 subiterations is consistent with the lower integrated lift in Fig. 42. 

Finally, another simulation was run with a large DT = 50 using first-order time accuracy to forcibly coerced the 

unsteady separation on the upper surface of the wing along with 250 subiteraions to ensure inner convergence.  The 

integrated lift coefficient history of this is shown by the burgundy line with solid circles in Fig. 42.  Although a steady 

state value is achieved, the integrated lift coefficient again was ~10% lower than the experimental value.  This result 

indicates that the standard RANS turbulence models have insufficient accuracy for the complex turbulence physics of 

the flows considered here when run using standard practices. 

These findings indicate that the resolved high-frequency turbulence in the wake of the Krueger support bracket 

along with the separation bubble that forms on the upper surface of the wing at these high angles of attack are critical 

to accurately model the upper-surface separation of the wing.  Non-time-accurate simulations do not solve the 

governing equations, and are not reliable for critical unsteady phenomena.  Results are acceptable, only if sufficient 

turbulence is resolved, and the models are operating in a form of RANS-DES mode.  Currently, our CFD tools are 

limited in their ability to predict this flow field using standard turbulence models, and the time-accuracy needed to 

improve overall simulation fidelity is computationally expensive.   

Additional simulations and comparisons with the available experimental data for other similar flight conditions 

are required in order to provide greater insight into simulating these flows.   Fortunately, flight Krueger support 

brackets are smaller and more numerous than the wind tunnel model brackets, and may not cause a similar CFD 

simulation problem.  

  
    a) DT=10, 10 subiterations        b) DT=10, 100 subiterations 

Figure 45. FUN3D Surface flow streamline predictions showing flow separation (reverse flow shown in blue) 

on upper surface of HWB configuration due to time accuracy convergence at αααα=20°. 

V. Conclusions 

Computational Fluid Dynamic (CFD) simulations were an integral part of the NASA ERA project.  CFD helped 

support experimentalists in evaluating interference effects due to model support structures, as well as provided 

alternate support options to reduce unwanted effects for everything from sting selection to aeroacoustic array 

placement.  Multiple CFD solvers, including NASA’s OVERFLOW, USM3D, and FUN3D as well as the commercial 

CFD solver STAR-CCM+, were efficiently and successfully used to provide timely insight into the wind tunnel 

experimental setup and execution.  In addition, through the availability of post-test wind tunnel data, CFD simulation 

guideline development was possible.  A key aspect of this experience was the opportunity to perform this work side-

by-side with the wind tunnel experimentalists throughout the project.  This made for a well-informed team providing 

firsthand knowledge on how specific items were being setup in the test as well as how data from the test was to be 

measured and post-processed for later CFD analysis.   
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