

Preliminary Design of the Continuous ADRs for the Primordial Inflation Explorer (PIXIE)

Peter Shirron, Michael DiPirro, Dale Fixsen, Al Kogut (PI), NASA/Goddard Space Flight Center Greenbelt, MD 20771

PIXIE Architecture

- Orbit
 - L2
 - Zenith-pointing
 - 1 rpm spin
 - Continuous sky scan
- Cryogenic system
 - 2 radiatively cooled shields
 - 2 actively cooled shields
 - Stirling/JT cryocooler
 - ADR system
 - 2.725 K telescope (iADR)
 - 100 mK detectors (dADR)
 - Continuous cooling required

PIXIE Optical Path

• PIXIE operates as a nulling polarimeter which is sensitive only to the *differences* between two nearly identical sources

- FTE produces a rotating fringe pattern at twice the s/c spin rate (4 rpm)
 - Allows separation of instrumental effects that appear at the spin rate
- Optical components and calibrator are systematically varied in temperature to identify any effect on detector output

NASA

Thermal Map

- Heat inputs to 2.7 K
 - 1.2 mW from 17 K
 - 1.0 mW from dADR
 - 2.5 mW from temperature control of optics
 - Total of 4.7 mW
- Current design has 100% margin on 100 mK and 2.7 K loads
- iADR will output 12 mW at 4.5 K

ADR Assemblies

- Parallel configuration for iADR can achieve near continuous heat rejection
 - Maximizes cooling power at 2.6 K
- Carnot efficiency: 9.4 mW in at 2.6 K -> 16 mW at 4.5 K
 - Goal is peak heat rejection rate of 20 mW

ADR System Schematic

- 3-stage dADR uses constant 2.6 K heat sink
- 2 μW detector heat load at 100 mK

- Telescope/optics are connected to the 2.6 K thermal bus with a tailored k
 - Temperature controlled to 2.725 $\pm\Delta$
 - Δ varies from 5-10 mK for most components, 20-100 mK for calibrator
 - Transition time must be shorter than period of temperature variations
- Optimize thermal bus temperature to give smallest entropy usage (\dot{Q}/T)
 - Peak heat load (all optics at elevated temperature) is 2.5 mW

ADR Design Parameters

PIXIE ADR			Hitomi ADR		
Stage	Refrigerant	B field (T)	Stage	Refrigerant	B field (T)
1	60 g, CPA	0.2	1	270 g, CPA	2
2	60 g, CPA	1			
3	60 g, GLF	3	2	150 g, GLF	3
5	60 g, GLF	3			
4a	150 g, GLF	3	3	150 g, GLF	3
4b	150 g, GLF	3			

• Detectors are not sensitive to magnetic fields, so magnets have only basic shielding to minimize interactions between stages

- iADR was modeled for 9.4 mW continuous heat input
 - Peak heat reject rate is ~20 mW
- iADR and dADR are purposely synchronized to maintain stable temperature pattern

Summary

- Continuous cooling of the detectors and telescope are key requirements for PIXIE
- Two 3-stage ADR assemblies provide continuous cooling at 100 mK and 2.66 K
- High efficiency and near-continuous heat rejection are key to meeting power allocation for Stirling/JT cryocooler
 - Drives choice of parallel upper stages