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ABSTRACT

This work presents a stochastic reduced order modeling strategy for the quan-
tification and propagation of uncertainties in topology optimization. Uncertainty aware
optimization problems can be computationally complex due to the substantial number
of model evaluations that are necessary to accurately quantify and propagate uncer-
tainties. This computational complexity is greatly magnified if a high-fidelity, physics-
based numerical model is used for the topology optimization calculations. Stochastic
reduced order model (SROM) methods are applied here to effectively 1) alleviate the
prohibitive computational cost associated with an uncertainty aware topology optimiza-
tion problem; and 2) quantify and propagate the inherent uncertainties due to design
imperfections.

A generic SROM framework that transforms the uncertainty aware, stochastic topol-
ogy optimization problem into a deterministic optimization problem that relies only
on independent calls to a deterministic numerical model is presented. This approach
facilitates the use of existing optimization and modeling tools to accurately solve the
uncertainty aware topology optimization problems in a fraction of the computational
demand required by Monte Carlo methods. Finally, an example in structural topology
optimization is presented to demonstrate the effectiveness of the proposed uncertainty
aware structural topology optimization approach.

INTRODUCTION

The problem of interest in this study is a stochastic structural topology opti-
mization problem in the case where the loading is considered to be random. The ran-
domness in the loading will be introduced through uncertainty in the direction θ of
an applied force. An optimal material distribution is sought by solving the following
stochastic structural topology optimization problem
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min
x∈RNx

: C(x̂) = E
[
UT [K(x̂)]U

]
=

Ne∑
e=1

(ze(x̂k))
βE
[
ūTe [ke]ūe

]
subject to : R(U , x̂; Θ) = 0 in Ω a.s.

:
Ne∑
e=1

ze(x̂k)Ve ≤ Vmax

: 0 ≤ x ≤ 1,

(1)

where x denotes the density at the control points, x̂ is the filtered density at the control
points, x̂k are the filtered densities associated with the k-th set of control points in finite
element e, ze is the filtered material density for element e, β > 1 is a penalty constant
that aims to push the material density in element e to zero, Ne is the total number of
finite elements, and Nx is the total number of control points. C is the expected value in
the structural compliance, Ve is the volume of finite element e, and Vmax is the material
volume limit. [K] is the stiffness matrix assembled from element stiffness matrices [ke]
[1], U is the random global displacement vector and ūe are the random displacements
for element e, R is the residual equation, Ω ⊆ Rd, d ∈ {1, 2, 3} is the computational
domain, and Θ is the random direction of an applied force.

The volume constraint is defined using filtered material densities ze but the
filtered densities at the control points x̂e can be defined as nodal or element control
points. Thus, given x̂, the filtered material density at each element is defined as:

ze(xk) =
1

n̂e

∑
k∈Ke

x̂k, (2)

where n̂e is the number of control points in the set Ke of control points associated with
element e. If nodal control points are used in (2), n̂e is equal to the number of nodes on
element e. Contrary, if element control points are used, n̂e = 1.

Notice that in (1) the stochastic structural topology optimization problem is
now constrained by a system of stochastic algebraic equations

R(U , x̂; Θ) = [K(x̂)]U − F (Θ), (3)

where F is the random global force vector. The global displacement and force vectors
are now random in (3) through their dependence on the random direction of applied
load Θ. The solution of (1) depends on a suitable parameterization of the random di-
rection Θ so that the solution of the stochastic constraint equations and evaluation of
the expected value in the structural compliance becomes tractable, discussed in Section
4.

The remainder of this article is organized as follows. In the next section, the
motivation for this work is discussed. In the following section, the proposed method
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is detailed, including the deterministic structural topology optimization formulation, a
generic description of SROMs, and the presentation of the stochastic structural topol-
ogy optimization formulation based on a SROM representation of the random direction
Θ. The gradient derivation for the stochastic structural topology optimization problem
using SROMs is also presented along with a summary of the core steps for computing
the objective function and gradient. Finally, the paper is concluded with a summary of
this work.

MOTIVATION

The intersection of additive processes and design optimization has introduced
revolutionary capabilities for design, product development and manufacturing. “Com-
plexity is free” has been a common mantra with additive manufacturing processes [2].
However, anyone involved in the qualification or certification of additive processes or
materials will acknowledge that complexity is currently not free due to the prevailing
lack of understanding of advanced manufacturing processes [2]. One approach to ad-
dress the stochastic nature of additive processes is to improve process determinism. An
alternate, complementary approach is to account for these inherent uncertainties early
in the design process by providing designers with uncertainty aware computational de-
sign tools that generate solutions that insure performance requirements are met and
margins are quantified.

Uncertainties are abound in any design scenario and include sources from re-
quirements, boundary conditions and environments; not just process capabilities, feed-
stocks and final material properties. Advanced uncertainty quantification and propaga-
tion methodologies have been available for years [3, 4, 5], but even the most basic capa-
bilities for design under uncertainty [6, 7, 8] remain unavailable to end users. Since ex-
isting tools do not account for uncertainties during analyses, there is no guarantee that
their solutions are robust to these sources of uncertainty. While holding great potential
and value for product performance and qualification, design under uncertainty is a sig-
nificant challenge due to the computational resources necessary to create high-fidelity
solutions. This computational toll limits the design iterations available to explore so-
lutions robust to uncertainties. Thus, to make design under uncertainty an integral part
of the design process, critical algorithmic issues must be solved. First, novel sampling
algorithms are needed to reduce sample sizes required to accurately quantify and prop-
agate sources of uncertainty. Second, algorithms must efficiently utilize all available
computing resources to increase performance, speed, and accuracy. Third, these novel
algorithms should be integrated into a reliable computational design tool accessible to
end users.

This work aims to apply a stochastic reduced order model (SROM) to acount
for uncertainty in applied loading during structural topology optimization. A SROM is
a low-dimensional, discrete approximation to a continuous random element comprised
of a finite and usually small number of samples with varying probability. This non-
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intrusive approach enables efficient stochastic computations in terms of only a small
set of samples and probabilities. The SROM concept was originally proposed in [9]
and then further refined in [10]. The SROM approach has been demonstrated in mul-
tiple applications, including the determination of effective conductivities for random
microstructures [11], the estimation of linear dynamic system states [12, 13], inverse
problems under uncertainty [14], the quantification of uncertainty in intergranular cor-
rosion rates [15], and the prediction of the structural reliability of components contain-
ing laser welds [16]. The primary strengths of SROMs are their ability to represent an
underlying random quantity with low-dimensionality and to subsequently solve uncer-
tainty propagation problems in a fraction of the computational time required by Monte
Carlo methods.

This work, to the best of our knowledge, represents the first application of
SROMs to structural topology optimization under uncertainty. Furthermore, by im-
plementing this work in Sandia National Laboratories’ Platform for Topology Opti-
mization (PLATO) design tool [17], this represents the first implementation of SROMs
in a production synthesis optimization tool. Today, PLATO users can apply this state-
of-the-art SROM framework to solve structural topology optimization problems under
uncertainty. The SROM framework represents a practical approach with the follow-
ing strengths shown in this work: 1) it relies entirely on calls to existing determin-
istic solvers and optimization libraries, 2) it is easily parallelized and scalable, and
3) it is not specific to normally distributed random quantities. Additionally, in contrast
with existing stochastic collocation-based methods that discretize the entire probability
space equally, SROMs naturally give higher weight to important areas of the probabil-
ity space [14]. This property yields low-dimensional approximations and thus relatively
few calls to deterministic models.

FORMULATION

First, let H = L2(Ω;Rd) denote the Hilbert space of measurable and square
intregrable functions endowed with inner product 〈φ, ψ〉H =

∫
Ω
φψ for φ, ψ ∈ H

and norm ‖φ‖H = 〈φ, φ〉1/2H is defined. Now, define the finite dimensional spaces U :=
span{φi}, φi ∈ H for i = 1, . . . I, I ∈ N, Y := span{ψj}, ψj ∈ H for j = 1, . . . J, J ∈ N,
and Vi = span{ϕk}, ϕk ∈ H for k = 1, . . .K, K ∈ N. The following finite dimensional
approximations for the displacements, control points, and Lagrange multipliers can
then be defined as u =

∑I
i=1 aiφi, ai ∈ R ∀ i = 1, . . . I, x =

∑J
j=1 bjψj, bj ∈ R ∀ j =

1, . . . J, and λ =
∑K

k=1 ckϕk, ck ∈ R ∀ k = 1, . . .K, respectively. This notation will be
utilized in the formulation of the method throughout this section.
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Deterministic Structural Topology Optimization

A typical deterministic structural topology optimization problem based on the
Solid Isotropic Material with Penalization (SIMP) [18, 19] approach can be written as

min
x∈RNx

: C(x̂) = uT [K(x̂)]u =
Ne∑
e=1

(ze(x̂k))
βuTe [ke]ue

subject to : R(u, x̂; θ) = 0 in Ω

:
Ne∑
e=1

ze(x̂k)Ve ≤ Vmax

: 0 ≤ x ≤ 1,

(4)

where

R(u, x̂; θ) = [K(x̂)]u− f(θ) (5)

is the deterministic residual equation, u is the deterministic global displacement vector,
and f is the global deterministic force vector resulting from a load in direction θ.

A parallel linear kernel was used to ensure existence of solutions and avoid
numerical artifacts (e.g. checkerboard patterns) that may result from the discretization
of the density field with possibly unstable finite elements. Specifically, a linear kernel
filter

Fik = max

(
0, 1− d(i, k)

R

)
(6)

is applied to the control points [20, 21] to avoid the aforementioned numerical artifacts.
Therefore, the filtered control point x̂k is given by

x̂k =
∑
i=1

= wikxi, (7)

where the weights in (7) are defined as

wik =
Fik∑
l∈Nk Flk

. (8)

In equations (6)-(8), d(i, k) is the distance between control points xi and xk and R is
the radius of influence. Nk = {xi : d(i, k) ≤ R} is the neighborhood of control points
that are inside the radius R, including the control points on the boundary of the radius,
with respect to control point xk.
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Generic Description of SROM

A SROM is a discrete approximation of a random quantity (variable, vector,
etc.) defined by a finite and generally small number of samples with varying proba-
bility. In this work, a SROM Θ̃ defined by parameters {θ̃(j), p(j)}mj=1 is used as a low
dimensional approximation of the random load direction Θ. Here, Θ̃ has size m with
samples {θ̃(1), ..., θ̃(m)} and probabilities (p(1), ..., p(m)) associated with each sample,
where p(j) ≥ 0 ∀j and

∑m
j=1 p

(j) = 1. The cumulative distribution function (CDF), F̃ ,
of the SROM is expressed as

F̃ (θ) = P (Θ̃ ≤ θ)

=
m∑
j=1

p(j)1
(
θ̃(j) ≤ θ

)
, (9)

where 1(condition) is the indicator function (= 1 if the condition is true, = 0 other-
wise), while qth order moments are given by

µ̃(q) = E
[
Θ̃q
]

=
m∑
j=1

p(j)(θ̃(j))q. (10)

In practice, the SROM Θ̃ must be formed such that it is close to Θ in a statistical
sense. For a given random variable Θ with known CDF, F (θ), and moments, µ(q), this
is done by selecting the defining SROM parameters through the following optimization
problem

Θ̃ := argmin
{θ̃},p

(
α1

∫
Iθ

(
F̃ (θ)− F (θ)

)2

dθ + α2

q̄∑
q=1

(
(µ̃(q)− µ(q))

µ(q)

)2
)

(11)

subject to :
m∑
j=1

p(j) = 1 and p(j) ≥ 0, j = 1, ...,m.

Here, α1 and α2 are weighting factors controlling the relative importance of matching
the target CDF and matching moments up to order q̄, respectively, and

∫
Iθ

is the support
of Θ. More details on the solution of the optimization problem in (11) can be found in
[10].

After the SROM Θ̃ has been determined through Equation (11), it can be used
to efficiently and non-intrusively propagate uncertainty through a computational model
such as Equation (3). In a manner analogous to Monte Carlo methods, this is done by
first evaluating the deterministic model (Equation (5)) for values of Θ equal to each
SROM sample, e.g.

R(u(j), x̂; θ̃(j)) = 0, j = 1, ...,m.
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The resulting set of state samples, {u(j)}mj=1, and original probabilities, p, define a
SROM Ũ for U . The statistics of U can then be estimated using the analogous mul-
tidimensional versions of Equations (9) and (10). It has been shown in previous work
[15, 10] that the number of model evaluations, m, required by SROMs can be sub-
stantially less than traditional Monte Carlo while retaining similar accuracy. In this
way, SROMs can be viewed as a smart Monte Carlo method, where preprocessing is
done through the optimization problem in Equation (11) to yield m samples of Θ with
probabilities that are tuned to best reflect the original statistics.

Structural topology optimization using SROMs

A SROM Θ̃ is first generated by solving (11) and optimizing for the defining pa-
rameters, {θ̃(j), p(j)}mj=1. The parameterization of the random direction, Θ, via SROM
enables us to recast (1) as

min
x∈RN

: C̃(x̂) = E
[
UT [K(x̂)]U

]
=

m∑
j=1

p(j)(ũ(j))T [K(x̂)]ũ(j)

=
m∑
j=1

p(j)

N∑
e=1

(ze(x̂k))
β(ũ(j)

e )T [ke]ũ
(j)
e

subject to : R(u(j), x̂; θ̃(j)) = 0 in Ω a.s., for j = 1, ...,m

:
Ne∑
e=1

ze(x̂k)Ve ≤ Vmax

: 0 ≤ x ≤ 1,

(12)

where

R(u(j), x̂; θ̃(j)) = [K(x̂)]ũ(j) − f̃ (j). (13)

In (13), f̃ (j) ≡ F (θ̃(j)) is the external force vector assembled using the jth sample of
the SROM Θ̃. Note that the stochastic algebraic constraint in Equation (1) has been
transformed into a set of m independent deterministic constraint equations using the
SROM. The decoupling of these equations allows them to be evaluated in parallel with
simultaneous calls to the original deterministic model software.

Gradient Derivation

The adjoint approach based on a Lagrangian is used to derive the gradient of
the objective function in (12) with respect to the control points x. It is assumed that
the objective function in (12) is differentiable with respect to x and that nodal values
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of the control are used. First, the following Lagrangian function is defined

L(x, λ̃(j)) := C̃(x̂) + (λ̃(j))T ([K(x̂)]ũ(j) − f̃ (j)), for j = 1, . . . ,m, (14)

where λ̃(j) ∈ RN denotes the j-th vector of Lagrange multipliers. Since
R(ũ(j), x̂; θ̃(j)) = 0 is satisfied for all choices of λ̃(j), the gradient of the objective
function with respect to control points x is given by dL

dx
. Therefore, using the fact that

the displacement samples, {ũ}mj=1, are viewed as implicit functions of x, the derivative
of (14) with respect to the design variables is given by

dL(x, λ̃(j))

dxk
=
∂C̃(x̂)

∂ze

∂ze
∂x̂k

∂x̂k
∂xk

+
∂C̃(x̂)

∂ũ
(j)
e

∂ũ
(j)
e

∂xk

+ (λ̃(j)
e )T

(
∂R(ũ(j), x̂; θ̃(j))

∂ze

∂ze
∂x̂k

∂x̂k
∂xk

+
∂R(ũ(j), x̂; θ̃(j))

∂ũ
(j)
e

∂ũ
(j)
e

∂xk

)
,

(15)

where (15) is explicitly expressed as
m∑
j=1

(
p(j)

(
β(ze(x̂k))

β−1 ∂ze
∂x̂k

∂x̂k
∂xk

(ũ(j)
e )T [ke]ũ

(j)
e

)
+ (λ̃(j)

e )T
(
β(ze(x̂k))

β−1 ∂ze
∂x̂k

∂x̂k
∂xk

[ke]ũ
(j)
e

)
+

(
p(j)
(

2(ze(x̂k))
β[ke]ũ

(j)
e

)
+ (λ̃(j)

e )T (ze(x̂k))
β[ke]

)
∂ũ

(j)
e

∂xk

)
.

(16)

By using the adjoint approach, the third term in (16) can be eliminated by
choosing the Lagrange multipliers such that they satisfy

(ze(x̂k))
β[ke]

T λ̃(j)
e = −p(j)2(ze(x̂k))

β[ke]ũ
(j)
e . (17)

Therefore, the gradient of (14) is recast as
m∑
j=1

(
p(j)

(
β(ze(x̂k))

β−1 ∂ze
∂x̂k

∂x̂k
∂xk

(ũ(j)
e )T [ke]ũ

(j)
e

)

+(λ̃(j)
e )T

(
β(ze(x̂k))

β−1 ∂ze
∂x̂k

∂x̂k
∂xk

[ke]ũ
(j)
e

))
.

(18)

Since [ke] is self-adjoint and non-singular, the j-th Lagrange multipliers can be explic-
itly expressed as

λ̃(j)
e = −p(j)2ũ(j)

e . (19)

Thus, by substituting (19) into (18), the gradient of (14) can be expressed as
m∑
j=1

(
−p(j)

(
β(ze(x̂k))

β−1 ∂ze
∂x̂k

∂x̂k
∂xk

(ũ(j)
e )T [ke]ũ

(j)
e

))
. (20)
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Finally, the derivative of the material volume constraint is given by

∂ze(x̂k)

∂x̂k

∂x̂k
∂xk

Ve. (21)

Note that ∂ze(x̂k)/∂x̂k = 1 if element control points are used instead of nodal control
points. Furthermore, ∂x̂k/∂xk will depend on the type of kernel filter used to solve
(12).

Implementation

In this section, the sequence of steps for computing the objective function and
the gradient for the stochastic structural topology optimization problem defined in (12)
is summarized. After solving the optimization problem in (11) for the SROM parame-
ters, {θ̃(j),m(j)}mj=1, the following procedure is repeated to compute the objective func-
tion and gradient at each iteration:

1. Solve m decoupled, physics problems for the displacement samples, {ũ(j)}mj=1.

2. Evaluate the expected value in the structural compliance, C̃(x̂).

3. Compute the gradient of the objective function using (20).

Notice that computing the objective function and its gradient at each iteration require
m deterministic model evaluations. However, since the solves are decoupled and thus
independent of each other, they can be easily parallelized to minimize computational
cost. Furthermore, it is worth noting that the Hessian (or the application of the Hessian
on a vector) can be easily derived along similar lines to the approach used for the
deterministic case [22].

NUMERICAL EXAMPLE

In this section, the proposed SROM approach is used to solve a structural topol-
ogy optimization problem where randomness is introduced through uncertainty in the
direction of an applied external force. The SROM approach described in the previous
section was implemented using the optimization toolbox in MATLAB [23]. The im-
plementation is based on the fmincon function for constrained nonlinear optimization,
which accepts the objective function (12) and gradient (20) to solve the stochastic struc-
tural topology optimization problem in (12). In all the examples presented herein, the
interior-point algorithm was used along with a L-BFGS [24] Hessian approximation.

A sketch for the problem domain can be seen in Figure 1. The computational
mesh with 150,126 eight-node hexahedron finite elements was created with Cubit [25].
The stochastic structural topology optimization problem was solved with PLATO [17].
Sierra Structural Dynamics [26] was used to solve the linear static problem in (13).
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Figure 1: Problem domain used to solve the stochastic structural topology optimiza-
tion problem. The top pane shows the computational mesh. The bottom pane shows
the isosurface and the corresponding boundary conditions used to solve the stochastic
structural topology optimization problem.
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Fixed boundary conditions were applied on node set one, while a compressive force
along the y-axis and with magnitude 105 was applied on node set two. The Young’s
modulus was set to 109 and the Poisson’s ratio was set to 0.3.

The SROM approach was used to solve (12) when considering random-
ness in the direction of the applied load for the optimal samples and probabilities,
{θ̃(j), p(j)}mj=1. The target probability distribution for the random direction was a stan-
dard beta distribution, beta(3.6825,9.2063), on the interval [60◦ 100◦]. The volume frac-
tion was set to seven percent of the original volume (γ = 0.07). The optimality criteria
algorithm [27] in PLATO was used to solve (12). The algorithm was terminated based
on a tolerance on the relative change in the solution between iterations or the maximum
number of iterations, specified as ε ≤ 10−2 or 100, respectively. The initial guess for
each design variable, i.e. xe, was set to the target volume fraction. The filter’s radius of
influence was set to two times the smallest element length, i.e. R = 2`e.

The first step was to generate the SROM Θ̃ for the random direction of the
applied load, which was done offline as a preprocessing step before the stochastic
structural topology optimization problem is solved. With the known expressions for
the beta random variable statistics, the SROM optimization problem in (11) for uncer-
tainty propagation in forward models is solved to generate Θ̃ for a range of model sizes
m = {5, 10, 15, 20}. The CDF and moment error terms, (9) and (10) respectively, are
given equal weight in the objective function in (11), i.e. α1 = α2 = 1.0. The con-
vergence of the load SROM construction problem with increasing SROM size, m, is
shown in Figure 2. It is clearly seen that with further refinement of the Θ̃ SROM, the

Figure 2: Convergence of the SROM construction problem (11) with increasing SROM
size when generating the SROM for the random direction of the applied load.
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statistics of the underlying random loading direction is better approximated. Note that
the computational cost of the stochastic structural topology optimization problem in-
creases proportionally to the size of the SROM used. Therefore, the smallest SROM
representation yielding an acceptable error should be used in practice to minimize the
computational cost associated with (12). In Figure 3, the SROM CDF approximation
for different sizes is compared to the true distribution for the direction of the applied
load. It is clear that the discrete nature of the SROM approximation improves with
increased SROM size.

Next, lets study the behavior of the objective function (11) for increasing SROM
size as shown in Figure 2. As expected, the objective function value decreases with in-
creasing SROM size. A SROM Θ̃ with more parameters should be capable of better
approximating the statistics in Θ. From Figure 2, it is seen that a relatively small num-
ber of samples and probabilities defining Θ̃ were able to produce a small discrepancy

(a) m = 5 (b) m = 10

(c) m = 15 (d) m = 20

Figure 3: Comparison of the SROM CDFs with the true distribution of the direction of
the applied load (Θ) for different SROM sizes.
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between computed and observed moments. Indeed, very little improvement in the final
objective function value is observed as the SROM size is increased from 15 to 20.

Finally, in Figure 41, the optimal topology obtained by solving (12) with differ-
ent SROM sizes is compared to the optimal topology obtained by solving (4). These
components represent those that are expected to be the least compliant (stiffest) un-
der the prescribed volume constraints when node set 1 in Figure 1 is constrained and
node set 2 is subject to a loading with random orientation. In Figure 4 it can be seen
that the deterministic and the uncertainty aware structural topology optimization prob-
lems yield different solutions. The deterministic solution is symmetric about the y-axis;
however, the uncertainty aware solution looses its symmetry about the y-axis due to the
randomness in the direction of the applied load. Indeed, more material is placed on the
right side of the structure to counter the fact that the distribution on the direction of
the applied load favors samples above 90◦. Therefore, the right side of the structure is
more likely to carry a greater share of the load than the left side of the structure. Fur-
thermore, unlike the deterministic problem in which the load is perfectly applied along
the y-axis, the stochastic solutions have additional support material between the two
main structural members. This support material was likely placed to counter the possi-
bility of these members buckling due to an asymmetric load. Therefore, the rigidity (i.e.
stiffness) of the structure is increased by placing additional support material between
the two main structural members. This highlights the importance of taking into account
inherent design uncertainties when designing a structure since a small misalignment in
the orientation of the applied load could prompt failure due to buckling.

CONCLUSION

In this study, a novel framework for structural topology optimization under un-
certainty using stochastic reduced order models (SROMs) was proposed. By consid-
ering the structural topology optimization problem as a constrained stochastic opti-
mization problem, the approach was formulated in terms of minimizing an abstract
objective function with a stochastic model constraint. The non-intrusive nature of the
SROM approximation transforms the constrained stochastic optimization problem into
a deterministic one with decoupled, deterministic physics model constraints. Therefore,
the use of SROMs allows for a widely applicable method that relies solely on calls to
existing deterministic analysis solvers and optimization libraries. Furthermore, since
the model evaluations are completely independent from one another, the approach is
embarrassingly parallel and hence scalable to large design problems.

The effectiveness of the proposed SROM framework on a structural topology
optimization problem with random loading was demonstrated. Through a numerical
example, the importance of taking into account inherent uncertainties due to design
imperfections when designing a structure was shown. Furthermore, the approach can

1PLATO normalizes the objective function values with respect to the objective function value of the
first optimization iteration.
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(a) Deterministic (b) Θ̃ = 5 (c) Θ̃ = 10 (d) Θ̃ = 15 (e) Θ̃ = 20

Figure 4: The optimized topology for increasing SROM sizes. (a) First column is the
deterministic solution (C̃ = 7.05e−4); (b) second column is the optimized topology for
a SROM of size five (C̃ = 7.23e−4); (c) third column is the optimized topology for a
SROM of size ten (C̃ = 7.21e−4); (d) fourth column is the optimized topology for a
SROM of size fifteen (C̃ = 7.23e−4); and (e) fifth column is the optimized topology for
a SROM of size twenty (C̃ = 7.23e−4).
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accurately and efficiently quantify and propagate the statistics of a random load dur-
ing optimization. The method requires a small number of samples to characterize the
statistics of a random input, drastically reducing the computational cost associated with
the stochastic structural topology optimization problem.
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