
Safety Critical Flight Software

Code Coverage Utilization

Nate Uitenbroek

Outline

• Background

• Safety Critical Software

• Classifying Standards

• Contrast Commercial Aviation and Space Flight

• Observations

• Orion Specific Application (DRACO)

2

My Background

• NASA / L3 Communications

– Orion Flight Software Architect

– Orion Software Systems Engineering and Integration

• Honeywell

– Orion C&DH Flight Software Lead

• NPR 7150.2 Level A

– ISS MDM Application Test Environment field support

engineer (MATE)

• Software Development and Integration Lab Software

Verification Facility - SDIL-SVF

• Rockwell Collins

– Boeing 767 Display Head Module Software

Development and Test Lead

• DO-178B Level A Flight Software development and test 3

Safety Critical Software

• What is safety critical software

– Safety Critical software performs functions critical to human

survival

• Classifying Standards

– NASA NPR 7150.2

• NASA Software Engineering Requirements

– RTCA/DO178B

• Software Considerations in Airborne Systems and Equipment

Certification

4

NPR 7150.2 Software Classification

5

• Class A – Human Rated Software Systems

– Applies to all Space Flight Software Subsystems

(Ground and Flight) developed and/or operated for

NASA to support human activity in space and that

interact with NASA human space flight systems

• Examples of Class A software for human rated

space flight systems

– guidance, navigation and control; life support

systems; crew escape; automated rendezvous and

docking; failure detection, isolation and recovery and

mission ops

• Levels B, C, D, F, G and H also exist to cover

– non-human, mission support, general purpose and

desktop software

DO178B Software Levels

6

• Level A - Software whose anomalous behavior, as shown by

the system safety assessment process, would cause or

contribute to a failure of system function resulting in a

catastrophic failure condition for the aircraft

– Catastrophic Failure - Failure conditions which would prevent

continued safe flight and landing

• Level B - Software whose anomalous behavior as shown by

the system safety analysis process, would cause or

contribute to a failure of system function resulting in a

hazardous/severe-major failure condition for the aircraft

– Hazardous/Severe-Major Failure - Failure condition that would

reduce the capability of the aircraft or ability of the crew to cope with

adverse conditions to the extent that would be:
1. A large reduction in safety margins or functional capabilities

2. Physical distress or higher workload such that the flight crew could not be relied on to

perform their duties accurately or completely

3. Adverse effect on occupants including serious or potentially fatal injuries to a small number

of those occupants

Comparison

767 FSW Orion FSW Comparison

Test procedures are correct Test procedures are correct Similar process and checklists are used

Test results are correct and

discrepancies explained

Test results are correct and

discrepancies explained

Similar process and checklists are used

Test coverage of high level

requirements is achieved

Test coverage of high level

requirements is achieved

Similar process and checklists are used

Test coverage of low level

requirements is achieved

Test coverage of verification

success criteria is achieved

Orion derives verification success criteria

from design constrains that are linked to

requirements, while commercial aviation

approaches leverage design level shall

statements. The results are very similar.

Test coverage of software

structure is achieved

Level A - Modified

Condition/Decision

Level B – Decision

Coverage

Test coverage of software

structure is achieved

Class A - Modified

Condition/Decision

Collection of code coverage in

commercial aviation is required during the

requirements based testing campaign.

Space flight requirements are less

prescriptive and allow tailoring. Orion

has chosen to collect code coverage

during unit test rather than verification

Test coverage of software

structure (data and control

coupling) is achieved

Test coverage of software

structure (data and control

coupling) is achieved

Orion is still developing its approach to

testing data and control coupling and it is

planned to be similar to commercial

aviation

7Objectives should be satisfied with Independence

Observations

8

• Boeing 767 Display Unit Flight Software

• Code coverage metrics utilized to measure

verification test coverage

• Requirements based test campaign

• Unit under test is the flight load

• Orion Flight Software

• Code coverage metrics utilized to measure

unit test coverage

• Code structure based tests

• Unit under test is the class with stubs and

drivers

Structural Coverage Analysis

Resolution

9

• Shortcomings in requirements-based test cases

– Supplement test cases or change test procedures

• Inadequacies in software requirements

– Software requirements should be modified and

additional test cases developed

• Dead / Deactivated Code

– The code could be removed and analysis performed to

assess the need for re-verification

– Analysis and Testing could be done to show that there

are no means by which the code can be executed in the

normal target computer environment

– Show that the execution of the code would not lead to

catastrophic anomalies

Coverage Metrics Measure Test Campaign

Rigor

Code

Code

Code

Requirement

Test Script

Test Script

Test Script

Coverage

Coverage

Coverage

Manually Linked

Measured Coverage

Code coverage measurements confirm that the manually linked code

was adequately exercised during the requirements based testing efforts

DRACO

• Database and Reporting Application for Code

Coverage on Orion (DRACO)
– NASA developed tool that leverages a flight computer emulation to

execute tests and measure code coverage

• Concept of Operations
– Monitor the executable flight software in the target computer memory

via probes / tooling

– Execute a suite of tests to exercise the flight software

– Collect memory locations of executed lines of code

– Correlate memory locations back to the source code to determine

source code coverage of a particular run

– Create reports that allow selection and aggregation of coverage metrics

from multiple test runs

– Produce annotated source code listings that allow testers to improve

the coverage of their tests

– Produce aggregate reports showing test campaign effectiveness

Annotated Source Code

Code Coverage Metrics Report

13

Value to Orion

• Currently there are limited objective measures of

comprehensiveness of the verification test campaign

• Incremental verification strategy increases the need to

understand individual test coverage to evaluate the

comprehensiveness of the regression test suite

• Increases the confidence in Orion flight software ensuring

successful Orion EM-1 and EM-2 missions

• Provides objective approach to measuring code coverage on

any project that uses emulation models

Complexity and Innovation

• Track execution of software via address monitoring

• Breakpoints initiate a handler that records addresses that

were executed

• Post processing translates addresses to source lines

• Database warehouses coverage metrics data

• Reports graphically display results

• Features:

– Automated test execution and reporting

– Merge multiple test runs into single report

– Trace reporting to determine expected coverage

– Web based interaction for test scheduling, report generation, and analysis

DRACO Architecture

● Jenkins orchestrates tests runs

● DRACO provides command line

access to Simics code coverage

via telnet

● Jenkins can start and stop

coverage collection

● Jenkins can import test runs and

create reports

Flight Software Import

– Parses Orion FSW and finds

associations between files and class

names

– Finds partition association

– Stores associations between path,

class name, partition, and flight

software version

Orion

Source Code

Paths,

Class

Names

DRACO

DB

Template Generation

• Address to source line

mapping is obtained from

DWARF / ELF

• DWARF / ELF is generated

during compilation and

contains debug information

• The template is used by

DRACO for setting

breakpoints and for

generating reports

• Simics uses a configuration file to define code coverage objects for each

partition based on an address range

• Start command sets a breakpoint on each address of interest

• Breakpoint handler records each address hit in address dictionary for

stop command to write out

Simics Start

start

command

test script

name

partition

object

Simics Start: Modes

• Mode 1: Heat Map on Partition

– Aggregates hit counts for each address to create a “heat map” of

coverage

– Slowest speed but generates the most detailed coverage data

• Mode 2: Heat Map on List of C++ Source Files

– Sets breakpoints on every address of C++ source files defined in XML

input

– Same detailed coverage as mode 1 but only for specified files which

allows targeting specific files and a faster execution speed

• Mode 3: Coverage on Partition (default coverage option)

– Sets temporary breakpoints on entire partition

– Only documents whether or not address/source line was hit

– Fastest speed, manageable performance impact when targeting

individual partitions

Simics Stop

• Reads hit counts from

address dictionary and

writes to JSON coverage

file for the testrun

• Cleans up breakpoints

partition

object

stop

command

Import Coverage

• Get coverage file (filled in JSON template)

from Simics

• Parse file, gather coverage metrics per C++

source file

• Import metrics, store file

• Generate default report file

Generate Reports

• Report file (XML) specifies test runs to report

– Option to merge test runs

– Option to report of specific files

• Combine coverage data by partition

– Optionally, only pay attention to specified files

• Create report summary

• Create annotated source file reports with

hit/miss highlighting

Trace Reports

• Combine internal and external data

– Traceability data from RVTM/SDD import

– Coverage data from test run import

• Source trace:

– Given a source file, what test script should cover it?

– How well do each of those test scripts cover this file?

• Script trace:

– Given a test script, what source files should it cover?

– How well does the script cover those files?

Running Simics from DRACO

Simics DRACO

DRACO and PLATO

Where is DRACO being use?

• Currently, where is the software being used?

– JSC – Kedalion lab to measure Orion regression test

suite coverage to assist Software Functional Manager

COFR assessment of the flight software

– Industry – Web based access is currently under

development for Lockheed Martin to remotely run

tests, create reports and review analysis

• Where and how else could the software be

used?

– Any project using Simics emulations could use this

capability

– Demonstrated to Windriver for inclusion in their

product offering

Future Plans for DRACO

• Orion regression test assessment to begin Fall

2017

• Team of 3 to 5 interns to support test execution

and metrics collection

• Reports and analysis to be provided to

Lockheed Martin

• Tuning of the regression test suite to be an

ongoing activity through EM-1 verification

campaign (2019)

• Program support planned for 4 interns year

round to run tests and maintain DRACO tooling

Backup data

4. Team Members & Awards

• Team Members

– NTR

• Nathan Uitenbroek

• Cassidy Matousek

• Alex Blankenberger

• Luke Doman

• Kiran Tomlinson

• Natalie Cluck

– Recent Contributors

• Erik Vanderwerf

• Robin Onsay

• Sumaya Asif

5. Development & Release History

• Development Start – June 2016

• Initial Release – August 2016

• Incremental Improvements

– Test Automation and Integration with Jenkins –

December 2016

– Web interface and reporting enhancements – May

2017

• Next Release - May 2017

7. Form NF 1679 status

• e-NTR #: 1472574999 Status: NASA

Accepted

8. NPR 7150.2B Compliance

• DRACO has been developed using Agile

development processes commensurate with its

classification as NPR-7150.2B Class E software

• In many cases the team has chosen to follow

processes that align more closely with Class C

software to increase the quality

– This includes the use of automated requirements

based tests with traceability

– Peer reviews of all development and test artifacts

have been performed and captured

• requirements, architecture, implementation, test scripts, test

results

NPR 7150.2 Software Classification

34

NPR 7150.2 Software Classification

35

Levels F, G and H also exist to cover general purpose and desktop software

DO178B Software Levels

36

DO178B Failure Categories

37

Software Verification Process

38

Regenerate with just first couple columns

With reference to DO178B

Structural Coverage

39

Structural Coverage

40

if (Condition1 && Condition2) { OutcomeA; }

else { OutcomeB; }

Condition1 Condition2 Outcome

True True OutcomeA

False True OutcomeB

Condition1 Condition2 Outcome

True True OutcomeA

False False OutcomeB

Condition1 Condition2 Outcome

True True OutcomeA

False False OutcomeB

True False OutcomeB

False True OutcomeB

Structural Coverage

41

if (Condition1 && Condition2) { OutcomeA; } else { OutcomeB; }

Condition1 Condition2 Outcome

True True OutcomeA

False True OutcomeB

Condition1 Condition2 Outcome

True True OutcomeA

False False OutcomeB

Condition1 Condition2 Outcome

True True OutcomeA

True False OutcomeB

True False OutcomeB

False False OutcomeB

Decision Coverage

Condition/Decision Coverage

Modified Condition/Decision Coverage

