Safety Critical Flight Software

Code Coverage Utilization

Nate Uitenbroek

Outline

« Background

« Safety Critical Software

« Classifying Standards

« Contrast Commercial Aviation and Space Flight
* Observations

* Orion Specific Application (DRACO)

My Background

* NASA /L3 Communications

— Orion Flight Software Architect
— Orion Software Systems Engineering and Integration

* Honeywell
— Orion C&DH Flight Software Lead
« NPR 7150.2 Level A

— ISS MDM Application Test Environment field support
engineer (MATE)
» Software Development and Integration Lab Software
Verification Facility - SDIL-SVF

« Rockwell Collins

— Boeing 767 Display Head Module Software
Development and Test Lead
« DO-178B Level A Flight Software development and test 3

Safety Critical Software

* What Is safety critical software
— Safety Critical software performs functions critical to human
survival
« Classifying Standards

— NASA NPR 7150.2
* NASA Software Engineering Requirements

— RTCA/DO178B

« Software Considerations in Airborne Systems and Equipment
Certification

NPR 7150.2 Software Classification

* Class A — Human Rated Software Systems

— Applies to all Space Flight Software Subsystems
(Ground and Flight) developed and/or operated for
NASA to support human activity in space and that
Interact with NASA human space flight systems

« Examples of Class A software for human rated
space flight systems

— guidance, navigation and control; life support
systems; crew escape; automated rendezvous and
docking; failure detection, isolation and recovery and
mission ops

e Levels B, C, D, F, G and H also exist to cover

— non-human, mission support, general purpose and
desktop software

DO178B Software Levels

Level A - Software whose anomalous behavior, as shown by

the system safety assessment process, would cause or

contribute to a failure of system function resulting in a

catastrophic failure condition for the aircraft

— Catastrophic Failure - Failure conditions which would prevent
continued safe flight and landing

Level B - Software whose anomalous behavior as shown by

the system safety analysis process, would cause or

contribute to a failure of system function resulting in a

hazardous/severe-major failure condition for the aircraft

— Hazardous/Severe-Major Failure - Failure condition that would
reduce the capability of the aircraft or ability of the crew to cope with

adverse conditions to the extent that would be:

1. Alarge reduction in safety margins or functional capabilities

2. Physical distress or higher workload such that the flight crew could not be relied on to
perform their duties accurately or completely

3. Adverse effect on occupants including serious or potentially fatal injuries to a small number
of those occupants

Comparison

Test procedures are correct

Test results are correct and
discrepancies explained

Test coverage of high level
requirements is achieved

Test coverage of low level
requirements is achieved

Test coverage of software
structure is achieved
Level A - Modified
Condition/Decision
Level B — Decision
Coverage

Test coverage of software
structure (data and control
coupling) is achieved

Test procedures are correct

Test results are correct and
discrepancies explained

Test coverage of high level
requirements is achieved

Test coverage of verification
success criteria is achieved

Test coverage of software
structure is achieved
Class A - Modified
Condition/Decision

Test coverage of software
structure (data and control
coupling) is achieved

Objectives should be satisfied with Independence

Similar process and checklists are used

Similar process and checklists are used

Similar process and checklists are used

Orion derives verification success criteria
from design constrains that are linked to
requirements, while commercial aviation
approaches leverage design level shall
statements. The results are very similar.

Collection of code coverage in
commercial aviation is required during the
requirements based testing campaign.
Space flight requirements are less
prescriptive and allow tailoring. Orion
has chosen to collect code coverage
during unit test rather than verification

Orion is still developing its approach to
testing data and control coupling and it is
planned to be similar to commercial
aviation

Observations

* Boeing 767 Display Unit Flight Software
» Code coverage metrics utilized to measure
verification test coverage
* Requirements based test campaign
« Unit under test is the flight load
* Orion Flight Software
* Code coverage metrics utilized to measure
unit test coverage
» Code structure based tests
« Unit under test is the class with stubs and
drivers

Structural Coverage Analysis
Resolution

. Shortcommgs IN requirements-based test cases
— Supplement test cases or change test procedures

* |Inadequacies in software requirements

— Software requirements should be modified and
additional test cases developed

« Dead / Deactivated Code

— The code could be removed and analysis performed to
assess the need for re-verification

— Analysis and Testing could be done to show that there
are no means by which the code can be executed in the
normal target computer environment

— Show that the execution of the code would not lead to
catastrophic anomalies

wJ Coverage Metrics Measure Test Campaign
7 Rigor

— \anually Linked
— \leasured Coverage

Test Script

Test Script

Test Script >

Code coverage measurements confirm that the manually linked code
was adequately exercised during the requirements based testing efforts

DRACO

« Database and Reporting Application for Code
Coverage on Orion (DRACO)

NASA developed tool that leverages a flight computer emulation to
execute tests and measure code coverage

« Concept of Operations

Monitor the executable flight software in the target computer memory
via probes / tooling

Execute a suite of tests to exercise the flight software
Collect memory locations of executed lines of code

Correlate memory locations back to the source code to determine
source code coverage of a particular run

Create reports that allow selection and aggregation of coverage metrics
from multiple test runs

Produce annotated source code listings that allow testers to improve
the coverage of their tests

Produce aggregate reports showing test campaign effectiveness

Annotated Source Code

COHProcesslHz : :CDOHProcesslHz (int argfoo)
foo = argfoo;

| }

COHProcesslHz: i~COHProcessiHz() |

| } A

bool CDHProcesslHz::create() {

if (Thread::Create())

{
return true;

}

glse

{
numberOfFailures++;
state = BxDEAD;
return false;

}

| }

void CDHProcesslHz::Execute() {

Thread(RateGroup: :OneHz, false), numberOfFailures{#) {

Code Coverage Metrics Report

Report Generation Date:
FSW Version:

XML Report File:

JSON Coverage Files:

Partition Overview

Orion Code Coverage Report Summary

5 August, 2016 02:42PM
26a
/var/www/html/ktomlin1/codecover/source/draco/reportFiles/report_320.default.xml

Nar/www/html/ktomiin1/codecover/source/draco/26a.mode3.test.py.2016-08-05_14-40-41.json

Name Testruns Instructions Hit Total Instructions % Coverage
con ; 125 1613 as%
L3
cdh Partition Summary
Source File Testruns Instructions Total %
Reported Hit Instructions Coverage
scp/partitions/cgCdhPartition/CdhPsm/src/cdhPsm/PartitioninhibitEnableHandler.cpp 1 5 28 _
scp/partitions/cgCdhPartition/CdhPsm/src/cdhPsm/CDHProcess5Hz.cpp 1 7 13 53.85 %
scp/partitions/cgCdhPartition/CdahPsm/src/cdnPsm/CDHProcess40Hz.cop 1 96 171 56.14 %
scp/partitions/cgCdhPartition/CdhPsm/src/cdhPsm/CDHProcess1Hz.cpp 1 7 13 5385 %
scp/partitions/cgCdhPartition/CdhPsm/src/cdhPsm/CDHFactory.cpp 1 98 103 95.15 %
scp/partitions/cgCdhPartition/CdhPim/src/cdhPim/TimeUtllities.cpp 1 16 27 59.26 %
scp/partitions/cgCdhPartition/CdhPim/src/cdhPim/TimeReferenceSource.cpp 1 54 97 55.67 %

13

Value to Orion

Currently there are limited objective measures of
comprehensiveness of the verification test campaign

Incremental verification strategy increases the need to
understand individual test coverage to evaluate the
comprehensiveness of the regression test suite

Increases the confidence in Orion flight software ensuring
successful Orion EM-1 and EM-2 missions

Provides objective approach to measuring code coverage on
any project that uses emulation models

Track execution of software via address monitoring
Breakpoints initiate a handler that records addresses that
were executed

Post processing translates addresses to source lines
Database warehouses coverage metrics data

Reports graphically display results

Features:

— Automated test execution and reporting
— Merge multiple test runs into single report
— Trace reporting to determine expected coverage

— Web based interaction for test scheduling, report generation, and analysis

External Data
Requirements
Source Code
Traceability

Database
&
File System

Internal Data
Test Runs
Coverage Files
Coverage Metrics

DRACO Tools

Regs.
-
-
Traceability

Code

Coverage
Metrics

Coverage
Files

Coverage
Metrics

Traceability

Coverage

RVTM/SDD Import

FSW Import

DRACQO Architecture

€— RVTM Files °
€— SDDFiles

Jenkins orchestrates tests runs
DRACO provides command line
access to Simics code coverage
via telnet

Jenkins can start and stop
coverage collection

Jenkins can import test runs and
create reports

€— [swhysTopProject
€— Partition ELFs

SOCRRATES

b
b

Test Run Import

Trace

> JSON Template

> Start Cov

Simics

Coverage Files

Trace Reports

Files

Report

Code

HTML Reports

Stop Cov

PLATO

Console

Web Browser

_
Flight Software Import

- Parses Orion FSW and finds
associations between files and class
names

- Finds partition association

— Stores associations between path,
class name, partition, and flight

software version

Orion
Source Code

Paths,
Class
Names

DRACO
DB

Template Generation

Address to source line
mapping is obtained from
DWARF / ELF

DWARF / ELF is generated
during compilation and
contains debug information
The template is used by
DRACO for setting
breakpoints and for
generating reports

"addr": "@x216boe4

“In": *116",

r': "ex21ebafe

"ln": "113",

r': "@x216blen

on/stFaultMgmt/src/MatlabFmToolkit /FMToolkit TwoInputFoidFailand.cpp®: |

r': "@x213dsdc

"ln": “45",
"hers =n,
"addr": "8x213d5b8

"ln": 46",

r*: "@x213d5c8"

“lnt: =47,

r': "@x213d5cc’

“Tnt: =48,

r*: "@x213ds5de

"1 T497,

r': "@x213d5d4

“Tn": 58",

"addr": "@x213d5d8

Simics Start

Simics uses a configuration file to define code coverage objects for each
partition based on an address range

Start command sets a breakpoint on each address of interest
Breakpoint handler records each address hit in address dictionary for
stop command to write out

start partition test script
comimand object name

simics> [cov-¥tart
MODE: 3

lcode_coveFage = cdh|(script = DRACO_EM1 FSWYALL ANOOP_Q1DS_0000. py)

Opening coverage file...
Creating dictionary of addresses...
Done.

Simics Start: Modes

« Mode 1: Heat Map on Partition
— Aggregates hit counts for each address to create a “heat map” of
coverage
— Slowest speed but generates the most detailed coverage data
 Mode 2: Heat Map on List of C++ Source Files
— Sets breakpoints on every address of C++ source files defined in XML
input
— Same detailed coverage as mode 1 but only for specified files which
allows targeting specific files and a faster execution speed
« Mode 3: Coverage on Partition (default coverage option)
— Sets temporary breakpoints on entire partition
— Only documents whether or not address/source line was hit
— Fastest speed, manageable performance impact when targeting
individual partitions

Simics Stop

"duration": 23.583982364999997,
€4

* Reads hit counts from
address dictionary and
writes to JSON coverage &
file for the testrun T

* Cleans up breakpoints

'addr”: "©0x2140774",

o | [t [
'"Ln": "45"

‘addr®: "0x2140794",
4 1 {okstl) I‘ll '
'Ln": "46"

stop partjtion :
CO m an d O bJ eCt n d r ; ’:‘1:'(;)x2149704",

vknta 150

running> [cov-¥top code coveFage = cdﬂ
Deleting breakpoints. ..

Done.

running> stop

simics> |

r*: "ex214e7ce",

Import Coverage

* Get coverage file (filled in JSON template)
from Simics

« Parse file, gather coverage metrics per C++
source file

* Import metrics, store file

* Generate default report file

Generate Reports

Report file (XML) specifies test runs to report

— Option to merge test runs

— Option to report of specific files

Combine coverage data by partition

— Optionally, only pay attention to specified files

Create report summary

Create annotated source file reports with

hit/miss highlighting

Trace Reports

« Combine internal and external data
— Traceability data from RVTM/SDD import
— Coverage data from test run import
* Source trace:
— Given a source file, what test script should cover it?
— How well do each of those test scripts cover this file?
« Script trace:
— Given a test script, what source files should it cover?

— How well does the script cover those files?

Running Simics from DRACO

Simics DRACO

X! Simics Control
Fle Edit Run Debug Tools Windows Help

[ncluck@tooldev dracol$./draco.py simics

, Usage:
D D [][] D é‘)@ draco.py simics "[any command to pass to Simics CLI]"
| OR
draco.py simics cov-start [partition name] -r
Honeywell P/N PS64001663-124 Release-v4_8al0_SCP draco.py simics cov-start [partition name] -hc fname = [file name]

System: VMC750 - SCP System

Processor: 1 ppc750fx, 400 MHz
(*|Memory: 0B

Ethernet: 1 of 3 connected

Storage: No disks

draco.py simics cov-start [partition name]
draco.py simics run
draco.py simics cov-stop [partition name]

The default IP is 139.1659.30.241 and the default port is B102.
However, if you need to send commands to a different IP address or port, add the
following arguments to each command you run:

draco.py simics -i [ip address] -p [port] [simics commands listed above]

2 min 55.801 s

[ncluck@tooldev dracol$ |:|

[NON] [\ Simics Command Line
| Mind River Simics 4.8 (build 4605 linux64) Copyright 2010-2015 Intel Corporation
Simics search path is now empty.
[The current Simics search path is:
/app_home/app/socrrates/development/Code_Coverage/Workspace_Latest_fcmld/
targets
| /app_home/app/socrrates/development/Code_Coverage/Workspace_Latest_fcmld/
| targets/vmc750
p /app_home/app/socrrates/development/Code_Coverage/Workspace_Latest_fcmld/
‘targets/vmc750/images
’ Setting step rate to 1/1 steps/cycle
oe d odu e VDE 0 U V e aLu ButtTer
I[tconG info] {vmc750.cpu 0x3bOfc 70320407054} Telnet frontend accepting
4 connections on port 8199

| ||SECURITY WARNING: Port 8199 will be open for anyone to access.
w

DRACO and PLATO

Establish telnet connection te simics

try:
tn = telnetlib.Telnet(telnet_ip, telnet_port)

except Excepticn as e:
print "\n’ -
print "You
sys.exit (1)

3333333

) §3 RERARREEREIRRREE

Call start coverage

tn.write('start-cov code_coverage = cdh -v script=EM1-FSW-ALL-ANCOP-CMDS-0000.py\n"')
Initialize the partition for testing

for partiticon in singleContrclModulePartitions:

partition.initialize()
Only print the header once
sapi.scp_printHeader = dontPrintHeader

BMP and FDO can't be inhibited or enabled, sc only send a NoOp
if isinstance(partition, EnabledPartition):

partition.noOp()
else:

partition.inhibit ()

partition.noCp()

partition.enable()
partition.noOp()

Call stop coverage
tn.write('stop-co

Clean-up
cleanUp(test_case, singleControlModulePartitions)
sapi.scp_requestShutdown ()

return

23333333833333\n

8 hostPort

Where IS DRACO being use”?

* Currently, where Is the software being used?

— JSC - Kedalion lab to measure Orion regression test
sSuite coverage to assist Software Functional Manager
COFR assessment of the flight software

— Industry — Web based access is currently under
development for Lockheed Martin to remotely run
tests, create reports and review analysis

* Where and how else could the software be

used?

— Any project using Simics emulations could use this
capability

— Demonstrated to Windriver for inclusion in their
product offering

Future Plans for DRACO

Orion regression test assessment to begin Fall
2017

Team of 3 to 5 interns to support test execution
and metrics collection

Reports and analysis to be provided to
Lockheed Martin

Tuning of the regression test suite to be an
ongoing activity through EM-1 verification
campaign (2019)

Program support planned for 4 interns year
round to run tests and maintain DRACO tooling

Backup data

4. Team Members & Awards

e Team Members

— NTR

« Nathan Uitenbroek
Cassidy Matousek
Alex Blankenberger
Luke Doman
Kiran Tomlinson
Natalie Cluck

— Recent Contributors
* Erik Vanderwerf

* Robin Onsay
« Sumaya Asif

Development Start — June 2016
nitial Release — August 2016

ncremental Improvements

— Test Automation and Integration with Jenkins —
December 2016

— Web interface and reporting enhancements — May
2017

Next Release - May 2017

/. Form NF 1679 status

« e-NTR #: 1472574999 Status: NASA
Accepted

— My Accepted Entries (1)
4 1. Database and Reporting tool for Code coverage on Orion (DRACO)

Last Modified On: August 30 2016 14:34:29 PDT Center. JSC e-NTR #: 1472574099 NTR Status
Report Date: 2016-08-30 Case #: MSC-26217-1 MASA Accepted
PDF V\iew Previous Versions Update View Comments (1) Duplicate Submitfor Review Delete

Database and Reporting tool for Code coverage on Orion (DRACQ) X

My
No Re NTR Submitted Innovator NASA NASA
Created for Review Review Review Accepted

a top

Submitter NASA

8. NPR 7150.2B Compliance

« DRACO has been developed using Agile
development processes commensurate with its
classification as NPR-7150.2B Class E software

* In many cases the team has chosen to follow
processes that align more closely with Class C
software to increase the quality

— This includes the use of automated requirements
based tests with traceabillity

— Peer reviews of all development and test artifacts
have been performed and captured

* requirements, architecture, implementation, test scripts, test
results

NPR 7150.2 Software Classification

e T 4y NN

Table 1.2.1-1 Software Classification Levels and Definitions

Level

Definition

Class A: Human Rated
Software Systems

« Applies to all space flight software subsystems (Ground and Flight)
developed and/or operated by or for NASA to support human activity in
space and that interact with NASA human space flight systems.

« Space flight system design and associated risks to humans are evaluated over
the program's life cycle, including design, development, fabrication,
processing, maintenance, launch, recovery and final disposal.

Examples of Class A software for human rated space flight melude but are not

limited to: guidance; navigation and control; life support systems; crew escape;

automated rendezvous and docking; failure detection, isolation and recovery; and

TSSO OPS.

Class B: Non-Human Space
Rated Software Systems

* Flight and Ground software that must perform reliably in order to accomplish
primary mission objectives.

Examples of Class B software for nonhuman (robotic) spaceflight mclude, but

are not hmited to, propulsion systems; power systems; guidance navigation and

control; fault protection; thermal systems; command and control ground systems;

planetary surface operations; hazard prevention; primary instruments; or other

subsystems that could cause the loss of science return from multiple mstruments,

Class C: Mission Support
Software

» Flight or Ground software that is necessary for the science return from a
single (noncrtical) instrument or 1s used to analyze or process mission data or
other software for which a defect could adversely mpact attainment of some
secondary mission objectives or cause operational problems for which
potential workarounds exist.

* (Class C software must be developed carefully, but validation and verification
effort is generally less intensive than for Class B.

Examples of Class C software include, but are not imited to, software that

supports prelaunch integration and test, mission data processing and analysis,

analysis software used in trend analysis and calibration of flight engineening
parameters, primary/major science data collection and distnbution systems,
major Center facilities, data acquisition and control systems, acronautic
applications, or software employed by network operations and control (which 1s
redundant with systems used at tracking complexes).

34

Class D: Analysis and
Dstribution Software

Nonspace flight software. Software developed to perform science data
collection, storage and distnbution; or perform engineering and hardware data
analysis.

A defect m Class D software may cause rework but has no direct impact on
mission objectives or system safety.

Examples of Class D software include, but are not limited to, software tools;
analysis tools, and science data collection and distnbution systems.

Class E: Deveopment
Support Software

Nonspace flight software. Software developed to explore a design concept; or
support software or hardware development functions such as requirements
management, design, test and integration, configuration management,
documentation, or perform science analysis.

A defect in Class E software may cause rework but has no direct impact on
mission objectives or system safety.

Examples of Class E software include, but are not limited to, earth science
modeling, mformation only websites (nonbusiness/info technology); science data
analysis; and low technical readiness level research S/W.

Levels F, G and H also exist to cover general purpose and desktop software

35

DO178B Software Levels

Software Level Definitions

Software level 1s based upon the contribution of software to potential failure conditions as
determined by the system safety assessment process. The software level implies that the level
of effort required to show compliance with certification requirements varies with the failure
condition category. The software level definitions are:

d.

Level A: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a catastrophic failure condition
for the arcraft.

Level B Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a hazardous/severe-major
failure condition for the aircraft.

Level C Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a major failure condition for the
aircraft.

Level D: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a mnor failure condition for

the awreraft.

Level E: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function with no effect on aircraft operational
capability or pilot workload. Once software has been confirmed as level E by the certification
authority, no further gmidelines of this document apply.

36

DO178B Failure Categories

Catastrophic: Failure conditions which would prevent continued safe flight and landing.

Hazardous/Severe-Major. Failure conditions which would reduce the capability of the aircraft or the
ability of the crew to cope with adverse operating conditions to the extent that there would be:

(1) a large reduction in safety margins or functional capabilities,

(2) physical distress or higher workload such that the flight crew could not be relied on to
perform their tasks accurately or completely, or

(3) adverse effects on occupants including serious or potentially fatal injuries to a small number
of those occupants.

Major: Failure conditions which would reduce the capability of the aircraft or the ability of the crew
to cope with adverse operating conditions to the extent that there would be, for example a
significant reduction in safety margins or functional capabilities, a significant increase in crew
workload or 1n conditions impairing crew efficiency, or discomfort to occupants, possibly including
Injuries.

Minor: Failure conditions which would not significantly reduce aircraft safety, and which would
mvolve crew actions that are well within their capabilities. Minor failure conditions may include, for

example, a shght reduction 1n safety margins or functional capabilities, a slight increase in crew
workload, such as, routine flight plan changes, or some inconvenience to occupants.

No Effect: Failure conditions which do not affect the operational capability of the aircraft or
increase crew workload.

37

Software Verification Process

h just first couplefcolumns Applicabinty

i ¥
to DO178B relsciin SW Lavael DRpELL
Description Aaf. A] B| C| D |Dascription Faf.

1 [Tastprocedures ara | 6.3.6b OO Sottwara Vartication Cases f11.13
cofrect. and Procadures

@
2 | Test results are corect | E3.6¢ | @ |O O Software Veritication Resuits| 11,14
and diccrepancies
explained.

3 | Tastcoverage of high- | 6.4.4.1
leval requirsments is
achizved,

4 | Test coverage of low- 644118 OO Software Verfication Results{ 11.74
isvel reguirsmsnts is
achigval,

§ | Test covarage of G442 Softwar Varification Fesults | 11,74
eaftware siructure
{maodifiad
copdticn/decision) is
achioved.

& [Test coverage of 64.4.224 | Software Veiification Reasults | 11,14 | (&) | 3
software structure 6.4.4 9h
{dectsion coverapa) is
achigved,

7 | Test coverage of 644224 (@ (D Software Verfication Results | 11.14 | &) |2 | (D)
softwara structure 6.4.4 2
(slatameart coverags)is |
achieved,

8 | Tast covaraga of A4zl |@ | Softwara Veritication Resclts | 11.14 |2 [| (D

goftwars structure (data
caupling and control
coupling} is achieved,

@
O
Q
O

A
@
@
Sohwzre Verification Reaults [11,14 |3
@
@

38

N T 8 - =l I ety e e s e e U B e e e e T e e

Structural Coverage

Structural Coverage Analyvsis Resolution

Structural coverage analysis may reveal code structure that was not exercised during testing. Resolution
would require additional software verification process activity. This unexecuted code structure may be

the result of:

a.

Shortcomings in requirements-based test cases or procedures: The test cases should be
supplemented or test procedures changed to provide the missing coverage. The method(s) used to

perform the requirements-based coverage analysis may need to be reviewed.

Inadequacies in software requirements: The software requirements should be modified and
additional test cases developed and test procedures executed.

Dead code: The code should be removed and an analysis performed to assess the effect and the
need for reverification.

Deactivated code: For deactivated code which is not intended to be executed in any
configuration used within an aircraft or engine, a combination of analysis and testing should
show that the means by which such code could be inadvertently executed are prevented. isolated,
or eliminated. For deactivated code which is only executed in certain configurations of the target
computer environment, the operational configuration needed for normal execution of this code
should be established and additional test cases and test procedures developed to satisfy the
required coverage objectives.

39

Structural Coverage

If (Conditionl && Condition2) { OutcomeaA,; }
else { OutcomeB; }

Decision Coverage - Every point of entry and exit in the program has been invoked at least once and every decision
in the program has taken on all possible outcomes at least once.

Condition Condition2

True True OutcomeA

False True OutcomeB

Condition/Decision Coverage - Every point of entry and exit in the program has been mvoked at least once, every
condition 1n a decision in the program has taken on all possible outcomes at least once, and every decision in the
program has taken on all possible outcomes at least once.

Condition1 Condition2

True True OutcomeA

False False OutcomeB

Modified Condition/Decision Coverage - Every point of entry and exit in the program has been mvoked at least
once, every condition in a decision in the program has taken all possible outcomes at least once, every decision mn
the program has taken all possible outcomes at least once, and each condition in a decision has been shown to
independently affect that decision's outcome. A condition 1s shown to independently affect a decision's outcome by
varymg just that condition while holding fixed all other possible conditions.

Condition1 Condition2

True True OutcomeA
False False OutcomeB 40
True False OutcomeB

False True OutcomeB

Structural Coverage

If (Conditionl && Condition2) { OutcomeA; } else { OutcomeB; }

Decision Coverage

True True OutcomeA
False True OutcomeB

Condition/Decision Coverage

Condition Condition?

True True OutcomeA

False False OutcomeB

Modified Condition/Decision Coverage

Condition Condition?

True True OutcomeA
True False OutcomeB
True False OutcomeB

41
False False OutcomeB

