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Objective

Motivation
•Achieve systems level weight savings in aerospace applications by providing 

multifunctional load bearing energy storage for all-electric or hybrid-electric 
propulsion systems.
• Improve upon the safety and reliability of energy storage systems by transitioning 

from liquid electrolytes to inherently safe all-solid-state battery configurations.

Acknowledgements: Ben Kowalski and Kevin Pachuta at Case Western Reserve University and, Jon 
Mackey, Dan Gorican, Rick Rogers, and Terry McCue at NASA Glenn Research Center

Conclusions:
•Microstructural development of Li(Ni0.33Mn0.33Co0.33)O2 has been studied in relation 

to its mechanical and electrical properties.
•Greater than 90% density can be achieved when sintering at and above 1075°C.
• Fracture stress correlates with sample density and is maximized near 45MPa. 

Mechanical performance requires composite infiltration to overcome brittle fracture 
failure before structural application may be realized.
• At 1100°C, grain coarsening leads to higher electrical resistivity, indicating conduction 

dominated by grain boundaries.
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• Characterize processing-structure-property relationships in cathode materials for 
optimized sintering conditions, structural and chemical stability, and microstructural 
development for all-solid-state structural lithium-ion batteries.
• Evaluate mechanical and electrical performance through ring-on-ring mechanical 

testing and impedance spectroscopy.

Figure 6: Typical XRD pattern for layered Rത3m 
Li(Ni0.33Mn0.33Co0.33)O2. 

• XRD patterns of rhombohedral layered structure remain unchanged across 
processing temperature range from 1000°C to 1100°C. 

• Li, Ni, Mn, & Co composition controlled 
with use of sacrificial powder bed.

• ICP indicates 3% lithium volatilization at 
highest sintering temperature and is within 
instrument uncertainty.

Mechanical Performance

• Mechanical fracture stress correlates with densities greater than 83% of theoretical 
density. Weibull analysis indicates reliability increases with reduction in porosity.
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σf – fracture stress (MPa)
h – specimen thickness (mm)
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Figure 9: Left: ring-on-ring mechanical fracture 
stress as a function of percent theoretical density.

Figure 10: Above: ring-on-ring mechanical testing 
and analysis performed according to ASTM 
C1499-15.

Materials
• Commercially available cathode active material 

Li(Ni0.33Mn0.33Co0.33)O2 (NMC).
• As-received agglomerates ball milled to liberate 

particles, reduce and homogenize particle size 
distribution.

Figure 4: volume fraction particle 
size distribution of milled NMC 
from dynamic light scattering.

Figure 3: Layered structure 
displaying transition metal 
octahedrons and lithium 
layers.3

3: “Lithium and sodium battery cathode materials: computational insights into voltage, diffusion, 
and nanostructural properties” M. Islam and C. Fisher. Chem. Soc. Rev., 2014, 43, 185-204

Figure 5: Top: NMC agglomerates. 
Bottom: NMC after 20hrs of ball 
milling.

Average Final Diameter: 0.7μm

Background

Figure 1: All-solid-state 
lithium-ion battery.1

• Secondary (rechargeable) all-solid-state 
lithium-ion batteries store electrical 
energy as chemical potential energy.
•Anode – receives Li+ during charging, 

releases Li+ during discharge.
• Electrolyte – allows facile diffusion of 

Li+ between composite electrodes, 
negligible electronic conductivity 
prevents leakage.
• Cathode – releases Li+ during charging, 

receives Li+ during discharge.

1 http://smeng.ucsd.edu/supercapacitors/                2After L. E. Asp, “Multifunctional composite materials for energy storage in structural load paths”

• Typical composite electrodes are composed of active material, 
electrolyte, and a electronically conductive additive phase.
•Multifunctional structural batteries provide energy storage and 

load-bearing performance to achieve overall weight reduction.

Densification and Coarsening

• >90% theoretical density reached at 
1075°C and above.

• Significant grain growth occurs at 
sintering temperatures above 1075°C.

Figure 7: Above, sintered microstructures for 
samples processed with increasing sintering 
temperature.  Average grain size is tabulated 
beneath each micrograph.

Figure 8: Left, plot displaying average percentage 
of theoretical density and average grain size for 
samples for all sintering temperatures.

Electrical Performance

Figure 11: Left: Characteristic complex Nyquist plot 
for sintered cathode samples and equivalent circuit 
model used in impedance spectroscopy curve fitting.

Figure 12: Right: electronic conductivity as a function 
of inverse temperature. Activation energies were 
calculated from linear fit Arrhenius slopes.

Figure 13: Below: plot demonstrating direct 
correlation between grain volume and electrical 
resistance.

• Grain growth correlates with increase in 
overall resistance, indicating grain 
boundary conduction as the dominant 
mechanism for electrical conductivity.
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Table 1: ICP data for various processing states and 
sintering conditions. AR – as received, M – milled.

Wt.
%   

AR      M      
1000°C-

1Hr     
1050°C-

1Hr     
1100°C-

1Hr     

Li 7.2 7.2 7.1 7.1 7.0

Ni 20.9 20.7 21.4 20.8 21.0

Mn 19.0 18.8 19.5 19.0 19.1

Co 19.9 19.7 20.5 20.0 20.0
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Figure 2: Schematic plot for 
system design to achieve overall 
weight savings.2
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