

Development of stable, low resistance solder joints for spaceflight HTS lead assemblies

Edgar R. Canavan¹, Meng Chiao², Lyudmyla Panashchenko¹, and Michael Sampson³

¹ NASA – Goddard Space Flight Center
² Alcyon Technical Services, LLC
³ SGT, Inc

Background: Astro-H (Hitomi)/SXS

Soft X-ray Spectrometer used a microcalorimeter array operating at 50 mK

Vacuum shell (~300 K) Cooled shield (~28 K) JT cooled shield (~4.5 K) LHe Tank (1.2 K) Cryocooler (1 of 2)

SXS Thermal System:

- (2x) 2 stage Stirling coolers
- JT cooler (4.5 K)
- 40 I LHe tank (1.2 K)
- 3 stage ADR (50 mK)

HTS leads for ADR magnet current (2 A) needed to meet stringent parasitic heat load requirements

• HTS allocation: 10 μW @ 1.2 K; 670 μW @ 4.5 K

17 February 2016: Hitomi launched; SXS performs flawlessly

CEC-ICMC

Madison, WI, July 10–14, 2017

CEC-ICMC

Background: XARM/RESOLVE

- In first few weeks, SXS demonstrated unprecedented resolution & discovered important new results
- 26 March, 2016: Attitude control system incident disables spacecraft
- 2017 Start recovery mission
 - RESOLVE instrument identical to SXS
 - Rapid turn around (2019 delivery to JAXA)
 - "build to print" with very few exceptions

RESOLVE HTS Lead Assemblies — Approach

Physical structure identical to Astro-H

Solder pads: 100 µm cu /immersion Ag

1 mm Ag5%Au coated REBCO tape

CEC-ICMC

NASA — Goddard Space Flight Center

RESOLVE HTS Lead Assemblies – Changes

- Changes driven by issues encountered in Astro-H
 - $-I_c$ degradation, esp. in humid environment
 - SXS: REBCO 2G conductor, Ag/Au coated, slit to 1 mm after
 - Concern over lateral H2O & CO2 transport from exposed edges
 - RESOLVE: same conductor, coated after slitting
 - Solder joint degradation
 - SXS: measurements showed $R \propto \log(t)$ at ambient T
 - Slow consumption of 2 µm AgAu layer by In3%Ag solder
 - RESOLVE: 20 µm Cu plating over HTS at solder joints
 - Variability of void density & joint R

NASA — Goddard Space Flight Center

CEC-ICMC

Updates to HTS/PCB solder process

- Prototype solder rig
 - Motivation: tight control of process parameters
 - Ball joint for uniform force
 - Diode for accurate temperature control
 - Wrapped tip heater uniform heating
 - Fine position adjustment
 - Accurate control of force
 - Typical parameters (for In48%Sn):
 - Apply 10 N (80 mm² area)
 - Controller on; set point = 150 C
 - Wait 30 s after T = set point; controller off
 - When T < 100 C, remove force
- Production solder rig
 - Miniaturized to fit flight assemblies

Madison, WI, July 10-14, 2017

CEC-ICMC

Solder Tests – Materials

- Test boards
 - Solder pads similar to flight boards (2 x 40 mm)
 - Separate voltage tap points
 - 16 joints / board
 - Plating types:
 - Bare copper
 - Immersion tin
 - Electroless Ni/immersion gold
- Solder
 - In48%Sn (m.p.118 C, eutectic)
 - 1 mm preforms

NASA — Goddard Space Flight Center

CEC-ICMC

Measurements and Early Results

- X-ray images to determine void fraction, wetting
- Joint resistances at 77 K
- Joint *R* vs *T* (3 K 300 K)
- Early development test
 - Varied T_{solder} 150 165 K, Force 5 20 N, hold time 30 – 90 s
 - no obvious patterns in x-ray images or R(77 K)
- Cycled 20 x (300 K \rightarrow 77 K); no change in any R(77 K)
- Comparison of surface treatment in process
 - Best results so far with manual pre-tinning of solder pads

Current Transfer Length

Serendipitous measurement:

- x = HTS end to voltage tap distance
- In early boards, x varied
- Measure joint *R* at 77K
- dR/dx = trace resistivity = 9.4 $\mu\Omega/mm$
- AstroH samples: trace resistivity = $8 \mu\Omega/mm$
- Intercept = average current transfer length, λ = 0.43 mm
- In Astro-H samples, $\lambda = 2 4 \text{ mm}$
- For subsequent boards, x = 0

NASA — Goddard Space Flight Center

CEC-ICMC

Low Temperature Resistance

- Measured *R* vs *T* (3 300 K)
 - Plateau 5 K < T < 16 K</p>
 - *R* ≈ 0 for *T* ≤ 5 K (T_c lnSn 7.1 7.5 K)
- Normalized by mean (8 16 K)
 - Still ~ 2 x variation at 70 K → not a simple geometric effect
- Measure *I-V* at 10 K
 - I up to full operating current (2A)
 - − Linear → ohmic behavior
 - Derived *R* matches those measured at low *I*

8

NASA — Goddard Space Flight Center

CEC-ICMC

Distribution of Joint Resistances at 77 K

- Allows convenient comparison
- Astro-H
 - Test board & prototype measurements
 - Flight units (from post-vibe functional cool-down)
- 4 recent boards produced with same prototcol

Results

- Values not directly comparable, but distributions are
- Astro-H measurements all had wide distribution

NASA — Goddard Space Flight Center

 Boards produced under new protocol show much tighter distribution

CEC-ICMC

SEM/EDS of Cross-Sections

• EDS

- Provides map of joint composition
- Shows formation of inter-metallics at boundaries, largely unreacted solder in center
- Vianco, et al.:
 - Culn growth rate follows

$$\mathsf{D} y = A t^n e^{-Q/RT}$$

− Predicts $\Delta y \approx 2.5 \ \mu m \text{ in 4 yr}$ → will maintain compliant InSn layer

NASA — Goddard Space Flight Center

CEC-ICMC

Conclusions

- RESOLVE: Rapid rebuild of Soft X-ray Spectrometer
- RESOLVE HTS lead assemblies to "build to print" except
 - Improved HTS material
 - New solder joint material & process
 - Plating protects Au layer from slow consumption by solder
 - New rig gives tight control of process parameters
- Solder process qualification tests
 - Good wetting and void levels (x-ray image)
 - Acceptable intermetallic layers at boundary
 - Ohmic behavior to full operating current
 - Excellent sample-to-sample variation in 77 K resistance
- Path forward
 - I-V testing to 5 A in prototype
 - Environmental degradation testing of joints an HTS tape