Progress towards a Microgravity CFD Validation Study using the ISS SPHERES-SLOSH Experiment

Presenter: Dr. Daniel Kirk

Jed Storey, Dr. Daniel Kirk – MAE Department, FIT

Brandon Marsell and Dr. Paul Schallhorn – NASA KSC LSP

Email: jstorey2009@my.fit.edu
Motivation

• Accurate prediction of slosh necessary for spacecraft and rocket design
• CFD is a valuable tool for slosh dynamics prediction
 – Requires extensive validation
• Long-term zero- or micro-gravity slosh data lacking
• ISS SPHERES-Slosh experiment designed to provide this data
MIT-FIT SPHERES-Slosh ISS Experiment

- Pill shaped tank filled with green-dyed water: 20% or 40% volume fractions
- Two MIT SPHERES + custom Slosh avionics boxes handle data collection
- The SPHERES or an astronaut provide motion
- 4 IMU’s and 2 cameras
Research Goals

• Overall: validate a CFD program for microgravity water slosh using as much of the SPHERES-Slosh data as possible
• Current: validate using 4 selected test cases
THE SPHERES-SLOSH DATA PIPELINE
Data Pipeline

• Responsible for reading, correcting, filtering, transforming data
• Writes a trajectory file used by the CFD program
 – 6DoF: 3-axis translation, 3-axis X-Y-Z body-frame rotations
• Written in MATLAB, > 1500 lines
Transformations

• All IMUs in a different coordinate system: need to transform data to “CFD body frame”
 – Centered at tank center
 – +x points from primary (“A”, blue) sphere to secondary (“B”, red) sphere
 – +z points in direction of SPHERE pressure regulation knob; between the cameras

• Accelerations required 3D rigid body kinematic transformations
Challenges

• Many challenges: discussed extensively in paper
• Low, variable data rate (20-30 Hz) and low, variable camera frame rate (0.5-2 fps)
 – Data hard to read in, lots of noise, difficult to filter
 – Hard to resolve sloshing events with low frame rate
• No clocks were synchronized
 – A side SPHERE and B side SPHERE were on different clocks, but so were the A side SPHERE and Slosh avionics box, as well as the A side camera
 – Difficult to match up A/B side data folders
 – Difficult to time-align the data and videos
 • Custom time-alignment algorithms
 • Custom real-time video writer based on repeating images
• No absolute position reference (metrology system not used): dead-reckoning/inertial-only scheme
Case Selection

• Time consuming
• Some tests missing some or all data and/or images
• Motion in many cases too low to induce significant sloshing
• Non-steady initial conditions: these had to be excluded because the trajectory computation algorithm requires steady initial conditions
• Variety of maneuvers desired
Selected Cases

<table>
<thead>
<tr>
<th>Science Mission</th>
<th>Test Number</th>
<th>A-side Folder</th>
<th>B-side Folder</th>
<th>Maneuver Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11</td>
<td>run_2014_06_18_16_34_33</td>
<td>run_2014_06_18_16_28_08</td>
<td>x-axis periodic translation</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>run_2014_06_18_16_44_23</td>
<td>run_2014_06_18_16_37_58</td>
<td>y-axis periodic translation</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>run_2014_09_09_11_37_51</td>
<td>run_2014_09_09_11_30_39</td>
<td>single push along +x axis</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>run_2014_09_09_12_29_35</td>
<td>run_2014_09_09_12_22_25</td>
<td>spin about +x axis</td>
</tr>
</tbody>
</table>

- Folder names are unmodified: if you download the SPHERES-Slosh data, these are the same names
 - Data and images in these folders
- Test number: count of test folders of specified Science Mission in chronological order
 - Used to name cases, example: “Science 2 Test 11”
- All astronaut-actuated
- Processed with data-pipeline
Trajectory Checking

• Trajectories were sanity checked using external video feeds of the experiments
 – These were manually extracted from hours of footage and matched with individual tests
• Following videos and graphs are of Science 2 Test 11 and Science 3 Test 16 trajectories
• All trajectories seem reasonable
 – Early data pipeline attempts often predicted that the experiment would be in space after ~10s
Science 2 Test 11 Graphs

[Graphs showing data over time with different axes and colors representing different variables.]
Science 3 Test 16 Graphs
OpenFOAM

CFD
Initial Work – Contact Angle

• Collected advancing, receding, and static contact angle measurements of water on 3D printed tank samples
• Post processing done in MATLAB
• Static contact angle $\sim 62^\circ \pm 10^\circ$
• However, images of ISS SPHERES-Slosh experiment reveal a thin film coating inside of tank
 – Reduces contact angle
 – Measured using same MATLAB code
• CFD static contact angle: 28°
 – Gives best approximation of initial fluid distribution
• CFD did not form fluid film at $\text{CA}=28^\circ$, though it did for $\text{CA}<15^\circ$
Initial Conditions

- Two options for obtaining good initial condition for fluid surface:
 - 1. Run simulation with no motion for ~60s, then start motion
 • Computationally expensive, but easier
 • Can simply copy the final time directory to the 0 (initial) directory in any future simulations.
 - 2. Determine initial conditions from SE FIT or prior OpenFOAM simulations and apply them to new simulations
 • Usually faster, but more difficult
 • Gives “cleaner” surface (more axisymmetric, less “noise”)
 • SE-FIT is difficult to use and sometimes has trouble converging
 • SE FIT .stl fluid surfaces have to be extracted in Paraview
 • stl can be applied in OpenFOAM using a “topoSetDict” in “setFields”

- After playing with both options extensively, I suggest using Option 1 most of the time
Oscillations

- Observed high frequency oscillations in the fluid surface and force data during initial CFD simulations
- These oscillations were traced to three sources:
 - 1. parasitic currents due to surface tracking scheme
 - 2. numerical instabilities
 - 3. low precision tabulated motion data
- Parasitic currents only present with no motion and less diffusive, i.e. 2nd order, numerical schemes
 - When motion is added, and the fluid dynamics become inertial dominated, these currents become negligible
- Numerical instabilities removed with careful selection of schemes and settings
Low Precision Tabulated Motion Data

- The tabulated trajectories for the initial test cases were generated with OpenFOAM’s 6DoF generator, which writes values with 6 digit precision (default C++ stream operator precision).
- Due to the incompressibility assumption and the slight inaccuracies introduced by using only 6 digit precision for position input, the resulting force data were “noisy”.
- When motion tables generated with 12 decimal point precision, all noise in the force waveforms eliminated.
- Some presenters mentioned observing high frequency force oscillations that looked identical to this problem at JPC last year.
 - try increasing precision of motion tables.
CFD Settings

- ~800k cell, hexahedral dominant with prism layer cells along the wall and has a smooth transition from the wall layer cells to the core mesh
 - A mesh independence study was attempted using a 1DoF sinusoidal motion test case and meshes of 800k, 2.4M, and 6M cells
 - Inconclusive
- 2nd order accurate time and space formulations
- PIMPLE solution scheme
- Multiphase volume-of-fluid (VOF)
- Laminar
- Constant density fluids (air and water)
- Surface tension, static contact angle
- Motion: position and orientation commanded
- Time step automatically adjusted based on CFL=1.5
- All residuals were driven to 1E-4 or lower for every time step
- Isosurfaces at a volume fraction of 0.5 were recorded every 0.02 s
- 6DoF force/moments output every time step (unused)
- All cases run on “america” cluster at KSC
CFD Post-Processing

• Paraview
 – Simple opacity, diffuse shading, and specular shading were used: fluid does not look particularly realistic
 – Note that the CFD images are just the clear tank walls and an isosurface at a volume fraction of 0.5. Bulk fluid is not colored.

• Python scripts written to automate post-processing and video creation

• A side and B side real time videos created
 – View point follows real experiment’s A and B side cameras
 – Had to program 6DoF transformations

• Experiment and CFD videos had to be manually aligned in time due to lack of clock synchronization
RESULTS
Science 2 Test 11

• Show A and B side videos (not embedded)
• Comments:
 – Frame rate makes seeing slosh events difficult
 – Bulk fluid distribution seems to agree fairly well, especially closer to beginning
 – The cause for the drops along the wall in the CFD is unknown. They seem to appear and disappear at random
 – Around 27s, a drop breaks off in the experiment. In the CFD, the prominence (that should have formed a drop) collides with the side of the tank, i.e. the tank wall rotates into the prominence
Science 3 Test 16

• Show A and B side videos (not embedded)
• Comments:
 – Frame rate makes seeing slosh events difficult
 – Bulk fluid distribution seems to agree fairly well
 – The CFD appears to be rotating about a slightly different axis than the experiment
 • Though the bulk of the fluid is still on the –z side of the tank, the CFD shows a skewed fluid distribution
 • Note: the experiment’s center of mass was shifted slightly in +Z relative to the center of the tank
Discussion

• Other two cases had similar level of agreement
• Something clearly wrong with rotation component
• Science 2 Test 11 repeated with 1DoF, x-axis translation only, motion
 – Better agreement with experiment. Drop did break off around 27s and traversed axis of tank
• Order of rotations required by OpenFOAM was different than what was being provided by data pipeline: fixed
• Cases were rerun with corrected trajectories, however, the re-run cases did not look appreciably different.
 – Likely either another data pipeline error or simply poor data quality
Future Experiments

• Various recommendations for future experiments similar to this one
• Absolute reference for trajectory corrections, e.g. the metrology system or optical tracking
• Data collected at about 20-30Hz and video at about 0.5-2 fps due to bandwidth limitations; these rates need to be higher (and constant) in order to eliminate data collection errors, implement better filters, and to resolve fast fluid flow features.
 – In fact, reducing the resolution of the images collected by the cameras (currently 5MP) may significantly improve the framerate in the current setup without a significant loss in quality
• The IMU data files should be in a consistent format
• All clocks need to be synchronized in future experiments to reduce errors introduced by time alignments
Conclusions and Future Work

• The data pipeline will be examined for possible remaining errors
 – Then uploaded to KSC Electronic Slosh Data Catalog
• CFD
 – Mesh
 • OpenFOAM just added a convenient tool for generating O-grid type meshes. That, plus refinement, would likely increase solution accuracy
 – Fluid film and/or dynamic contact angle modelling
 – Running more cases
• Visualization
 – Figuring out how to export fluid bounding surfaces instead of just isosurfaces
 – Blender instead of Paraview for photo-realistic video: lighting, shadows, reflections, refractions
Acknowledgments

The SPHERES-Slosh experiment was funded through the NASA Game Changing Development Program.

This research was partially funded by a NASA Space Technology Research Fellowship (NSTRF) through the Space Technology Mission Directorate (STMD).
QUESTIONS?

Jed Storey: jstorey2009@my.fit.edu