Ab initio Assessment of the Thermoelectric Performance of Ruthenium-doped Gadolinium Orthotantalate

Jon Goldsby, PhD, MBA

National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio

• Solid state energy harvesting using waste heat available in gas turbine engine offers potential for power generation to meet growing power needs of aircraft

• Thermoelectric material advances offer new opportunities

Concept Overview

Heat Source

Heat Sink

• Weight-optimized integrated turbine engine structure incorporating energy conversion devices

Characteristics for a desirable thermoelectric material

- Seebeck Coefficient ~ 100uV/K
- Electrical Resistivity 10⁻² Ohm*cm
- Thermal Conductivity ~ 10 W/m*K
- Electronic Band Gap -must be greater than zero
- High Temperature Capability

Computational Methods

BoltzTraP. A code for calculating band-structure dependent quantities *

Georg K.H. Madsen a,*, David J. Singh b

Computer Physics Communications 175 (2006) 67–71

Vienna Ab-initio Simulation Package

The Vienna Ab-initio Simulation Package, better known as **VASP**, is a package for performing ab initio quantum mechanical molecular dynamics using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set

Computing Platform: Hewlett-Packard Z840 Workstation Dual 18-core intel Xeon processors Widows 10 pro 64-bit 128 GB ram

Gd -Green Ta-Blue O-Red

Complex Oxide – based Pyrochlores mixed cation at B-site A_2 (B ³⁺, B^{~5+}) O ₇ Gd_2RuTaO_7

Calculated Cell Parameters

Parameter	Original	change	Final	8
a b	10.091900 10.091900	0.158505 0.137867	10.250405 10.229767	1.6
alpha beta	90.000000	-0.361354 0.392175	10.248657 89.638646 90.392175	-0.4 0.4
Volume	1027.824144	46.795542	1074.619686	4.6

Density: 8.759 Mg/m^3

I	1	2	3	4	5	6
1	303.99	122.74	112.40	0.00	0.00	0.00
2	122.74	342.62	128.66	0.00	0.00	0.00
3	112.40	128.66	289.89	0.00	0.00	0.00
4	0.00	0.00	0.00	98.03	0.00	0.00
5	0.00	0.00	0.00	0.00	76.22	0.00
6	0.00	0.00	0.00	0.00	0.00	88.62

Modulus	Voigt	Reuss	Hill	
Bulk	184.90	183.56	184.23	GPa
Shear	90.75	89.78	90.27	
Young's	233.98	231.59	232.78	
Longitudinal			304.59	

Velocity of sound

Calculated	from	Hill	moduli:
------------	------	------	---------

transverse waves:	3271	m/s
longitudinal waves:	6009	m/s
mean:	3649	m/s

Debye temperature: 465.9 K

the thermal coefficient of linear expansion at $600K = 7.60 \times 10^{-6}$

Calculated Electronic Band Structure

Perdew – Ernzerhof – Burke (PBE)

Heyd –Scuseria -Ernzerhof (HSE06)

Electrical Conductivity

Molecular Dynamic Computational Results: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

$2Gd_2O_3 + Ta_2O_5 + 2RuO_2$

2Gd₂(Ta, Ru)O₇ + ¹/₂ O₂

Solid state reaction, mechanical mixing, sintering in air, hot pressing

CONCLUSIONS

- Potential exist to harvest electrical power from excess enthalpy from gas turbine engines.
- Computational methods have enabled some fundamental parameters to be predicted in the development of thermoelectric materials.
- Some descriptions (band structure) are very sensitive to such things as mesh density.
- Oxide pyrochlores have potential as thermoelectric materials.