Requirements for an Integrated UAS CNS Architecture

2017 Integrated Communications Navigation and Surveillance (ICNS) Conference, April 18-20, 2017 (paper number 180)

Fred Templin (fred.l.templin@boeing.com) Raj Jain (jain@acm.org) Greg Sheffield (greg.l.sheffield@boeing.com) Pedro Taboso (pedro.tabosoballesteros@boeing.com) Denise Ponchak (denise.s.ponchak@nasa.gov)

NASA Contract NNA16BD84C

- NASA Safe Autonomous Systems Operation (SASO) Communications, Networks and Surveillance (CNS)
- Reliable and Secure CNS and Networks (RSCAN) project
- 18 month performance period
 - Contract signed August 17, 2016
 - Kickoff meeting (work begins) September 17, 2016
 - UAS CNS Requirements Report submitted December 17, 2016
 - First midterm review February 17, 2017
 - Final deliverable February 17, 2018

UAS CNS Requirements Report

- UAS operations considered in class A, B, C, D, E, G airspace and unregulated airspace between 200-400'
- Cites FAA Part 107 of Title 14 Code of Federal Regulations ("Part 107")
 - FAA regulations for small UAS (sUAS) under 55lbs
 - UAS example use cases given
- Considers scaling to accommodate large-scale UAS populations
 - Comms scaling (wireless RF capacity; Internet Protocol scaling)
 - Navigation and surveillance in crowded skies
 - alignment with NASA Unmanned Air Traffic Management (UTM) vision
- Considers existing and emerging datllink technologies, including SATCOM, L-Band, C-Band, AeroMACS, 4G, WiFi and Bluetooth
- Integrated Position, Navigation & Timing (PNT) considered with optimized C-SWAP+P (Cost – Size, Weight and Power + Performance)
- Requirements for improved UAS surveillance systems for UAS missions in controlled and uncontrolled air spaces

UAS Use Cases

- Agriculture
- Forest fire monitoring and control
- Search and Rescue
- Disaster relief
- Infrastructure monitoring (e.g., railways, powerlines, etc.)
- High altitude, long endurance surveillance
- Unmanned freighter
- Border and coastal patrol
- Law enforcement support
- News gathering
- Parcel deliveries
- Personal use (e.g., aerial photography, hobbyists, etc.)
- Many others

UAS Communication Network CONOPS

- Unmanned Air Traffic Management (UTM) network needed for harmonized UAS Air Traffic Control (ATC)
- Near-term UAS missions will be driven by ground pilots for tactical control with UTM ATC for strategic advisory oversight
- Longer-term will see more and more autonomy in UAS
 - No ground pilot, or ground pilot as passive monitor
 - UTM ATC must be able to take control at any moment
- UTM will connect all categories of UAS (small to large) throughout all phases of flight
- Requirements Report addresses Communication Network Requirements

The Unmanned Air Traffic Management (UTM) Global Network

- Overlay layered on top of the global public Internet
- Securely interconnects UAS enclaves with nationwide/worldwide coverage
- IPv6 addressing for reaching each enclave
- Larger UAS show up as mobile IPv6 subnets
- UTM ATC has full global world view
- Must scale to millions of IPv6 subnets and end systems

UAS Communication Network Requirements

• REQ CN1: UTM Global Internetwork Service

- Overlay network using dedicated links and/or encapsulation
- Based on IPv6; uses existing Internet links such as 4G/5G
- REQ CN2: Global Addressing
 - UTM end systems require a global IPv6 address or subnet

• REQ CN3: Multilink Support

- Must support use of multiple data links that may have limitations such as range, bandwidth, latency, etc.
- Maintain a stable and unchanging IPv6 address

• REQ CN4: Scalability

- Need a scalable addressing architecture (IPv6)
- Need to accommodate millions of UAS

• REQ CN5: Global Mobility Support

• Maintain persistent IPv6 addresses across mobility events

UAS Communication Network Requirements

• REQ CN6: Small UAS (sUAS) in uncontrolled airspace

- Soon be millions of sUAS registered in the US
- Need to support comms for both ground pilots and UTM ATC
- REQ CN7: Large UAS in controlled air space
 - Under control of ground pilots who coordinate with UTM ATC
 - Ground pilot role becomes advisory with higher levels autonomy

• REQ CN8: Reliability and Fault Tolerance

- Need a "better-than-best-effort" service in the network
- Reliable network protocols such as BGP
- Reliable UAS multi-link management

UAS Communication Network Requirements

• REQ CN9: Security

- Secure against Distributed Denial of Service (DDoS) attacks
- Protect Confidentiality, Integrity and Authentication
- Link-layer encryption, Mobile VPNs, End-to-End Security
- REQ CN10: Command and Control (C2) Messaging
 - Pilot-to-UAS tactical messaging via STANAG 4586
 - ATC-to-pilot strategic messaging via CPDLC
- REQ CN11: Situation Awareness (SA) Messaging
 - Need to accommodate streaming media such as motion video
 - In addition to C2 messaging; possibly using same data links

• REQ CN12: Communications in Off-Nominal Conditions

- Need "lost link" procedures
- Delay/Disruption Tolerant Networking (DTN)

Communication Network Overlay

- UAS operating in UTM IPv6 routing system
- UAS connects to Internetwork via any available data links
- Pilot and ATC may or may not be co-located with data link ground support infrastructure
- IPv6 routing in the UTM overlay joins all correspondents

Communications Data Link CONOPS

- □ Single Control: ATC control via pilot; pilot to UAS
- Control and Non-Payload Communication (CNPC)
- Direct Links (dashed lines)
- Networked Paths (solid lines)

Proposed Mission Categories

- Category A:
 - For recreation or sport
 - Unregulated but guided
- **Category B:**
- L., LOW Velocity Joury B: Commercial/Governmental, VLOS Regulated, non-airport, 400 ACU Joury C
- **Category C:**
 - **Beyond VLOS**
 - Larger than category $B \Rightarrow$ Kinetic energy
 - Non-airport, 400 AGL, Higher velocity
- **Category D:**
 - Similar to manned aircrafts
 - Access to NAS including civilian airports, >700 AGL
 - **On-Ground** 1.
 - 2. Taxi and Take-off
 - 3. En-Route
 - 4. Oceanic

Range

UAS Communication Data Link Requirements

• REQ DL1: Range

- Transmission distance of the last hop of the network to the UAS
- Mission Category A/B/C/D have different range requirements

REQ DL2: Velocity

- Speed of UAS affects the choice of data link technology
- 100km/hr for Category A/B/C
- Up to 2000km/hr for Category D

REQ DL3: Latency

• Affects how far UAS can deviate from its trajectory

• REQ DL4: Availability

- Category A/B require 99.99%
- Category C/D require 99.999%

UAS Communication Data Link Requirements

• REQ DL5: Integrity

- Refers to bit error rate (BER)
- Recovered by various error correction schemes
- Detected BER should be less than 10⁻³
- Undetected BER should be less than 10⁻⁶

• REQ DL6: Security

• All UAS data links required to be at least as secure as WPA2

REQ DL7: Bit Rate

- Depends on level of autonomy
- Fully autonomous UAS requires lower data rates

Suitability of Various Datalinks

UAS Navigation CONOPS

- Augment GPS and GPS sourced navigation aids using multisources/sensors
- Define/develop certifiable UAS Navigation Computer for use on all UAS operating in all classes of airspace
- Define/develop UAS Navigation Aiding error and correction techniques/solutions
- Define level of navigation accuracy needed for bounded range of maneuverability of various classes of UASs
- Define UTM/ATM UAS Navigation Message Schema
- Define navigation accuracy to support BLOS closed loop operations in NAS
- Define navigation accuracy needed to augment human in/on the loop during period of autonomous operations

UAS On-board Navigation Architectural Framework

A flexible resilient position, navigation, and timing system.

- Support launch to recovery in all airspace classes
- Global Navigation Accuracy: GPS equivalent
- All-Weather; 24/7 Availability
- Operating Altitude: Sea Level to 65K feet
- Augment human in/on the loop with better than GPS-like position & velocity accuracy
- Improved C-SWaP+P (cost, size, weight, & power + performance) through the use of integrated modular avionics and software virtual machine computing

UAS Navigation Requirements

• REQ NV1: GPS Augmentation

- Operate in GPS-denied conditions
- Vision/image-based; Signals of Opportunity; etc.
- REQ NV2: Certifiable Navigation Computing Architecture
 - Safety certification needed for safe integration of UAS
 - Need cost-affordable certifiable computing architecture

• REQ NV3: Navigation Source Error Detection and Correction

- Interference, jamming, spoofing need to be detected
- Compare RF-based; non-RF-based nav source calculations

• REQ NV4: Ground Controlled UAS Navigation Accuracy

- Define UAS maneuverability profile
- Define worst-case closed-loop time

UAS Navigation Requirements

• REQ NV5: Universal Navigation Message Schema

- STANAG 4586 messaging schema assumed
- Define STANAG 4586 extensions for navigation information

• REQ NV6: BLOS Navigation Accuracy

- Satellite communication delay is a problem
- High availability navigation needed for autonomous operations

• REQ NV7: Autonomous Navigation Accuracy

 Need advanced sensor capabilities for precision applications such as autonomously landing a UAS on a stationary pad

RF Based Navigation Aids

Ground Based Augmentation System (GBAS)

Wide Area Augmentation System (WAAS)

Ground-Based Navaids (GBN)

UAS Surveillance CONOPS

UAS Surveillance Requirements

• REQ SV1: Safety

- Allow UAS to operate without increasing risk
- Surveillance system must maintain or increase safety cirteria

REQ SV2: Capacity

- SSR; ADS-B 1090Mhz data link close to saturation
- Need alternative data links and networks

• REQ SV3: Efficiency

 Need efficient systems to accommodate increasing air traffic density and complexity

REQ SV4: Security

- Legacy surveillance systems not secure
- Security needed to defeat spoofing, jamming, cyber attacks

UAS Surveillance Requirements

REQ SV5: Integration

- Integration into controlled and uncontrolled air space
- REQ SV6: Dependent Cooperative Surveillance
 - Include ADS-B benefits while overcoming its vulnerabilities
- REQ SV7: Non-Cooperative Surveillance
 - New technologies needed (image recognition, noise/RF signature detection, etc.)

• REQ SV8: Surveillance Data Flows

- Data interchanges needed between UAS, commercial aircraft, ATCs, AOCs, etc.)
- REQ SV9: Performance
 - Need continuously updated presentation of surveillance info

IP-based surveillance system for UAS

Backups