Optical testing using portable laser coordinate measuring instruments

M. Khreishi
NASA Goddard Space Flight Center, Code 551, Greenbelt, Md.
manal.a.khreishi@nasa.gov, tel. 301 286 7864

R. Ohl
NASA Goddard Space Flight Center, Code 551, Greenbelt, Md.

K. Mclean
NASA Goddard Space Flight Center, Code 551, Greenbelt, Md.

T. Hadjimichael
NASA Goddard Space Flight Center, Code 551, Greenbelt, Md.

J. Hayden
Sigma Space Corp., Lanham, Md.
Portable laser Coordinate Measuring Instruments (CMI) examples: Laser radars (LR), laser trackers (LT)

Proof-of-concept study (PoC) to characterize a mirror using CMI “direct” and “through” (D&T) shots

Introduction

Instruments and targets used

Data collection

- OAP
- Convex sphere

Analysis

Results

Summary

Future work

“Through” measurement of objects outside the LR’s line of sight utilizing their virtual image via flat mirrors [8]
PoC study summary

- Non-contact CMI D&T measurement of calibrated target
- “Direct” measurement = actual target position
 - Measured during D&T data collection if within CMI LS
 - Transformed via reference targets if hidden
- “Through” measurement = apparent position measured along the instrument-target image line of sight (LS) (i.e. target measurement in reflection)
- “Through” ray-surface intercepts and surface normals calculated
- Data fit to conic surface formula for optimum
 - radius of curvature (RoC),
 - conic coefficient (k)
- Results crosschecked
Introduction

- LR/LT: Coordinate Measurement Machine (CMM)-like instruments
 - Advantages: High precision, versatile, portable, commercially available, getting more advanced and less expensive
 - Usually used for mechanical metrology, particularly large-volume, and alignment applications
- Using LT for optical shop and alignment applications examples
 - Guide the figuring of large mirrors: Giant Magellan Telescope (GMT) and the Large Synoptic Survey Telescope (LSST) primary mirrors (PM) [1],
 - LT coupled with advanced calibration technique, Laser Tracker Plus system [2]
 - Guide large mirror fabrication process
 - Verification test for GMT-PM1 interferometric test (several low-order aberrations)
 - LT used for RoC measurement, alignment of optical elements, and image tracking [3]
 - LT used for aligning optical systems, making use of the LT’s ability to measure along image LS through fold mirrors and windows [4]
 - Accurate measurement of angular orientation of fold mirrors
 - Real ray tracing code, “Laser Radar through Window” (LRTW) resolve optical path errors caused by additional materials/surfaces in LR/LT path [7]
 - Require spatial scanning by sliding/touching Spherically Mounted Retroreflector (SMR) on optical surface
 - Disadvantage: Hard, risky, time consuming, and usually requires man labor.

![LT measurement through fold mirrors and windows previously reported by Prof. Burge](image1)

![LT measurement of D&T positions of a metrology target to calculate the mirror angular orientation](image2)
Introduction - continue

- PoC study utilizing LR for prescription characterization and alignment of large mirrors [5]
 - Test article: Ground support equipment (GSE) mirror for ground test verification of part of the James Webb Space Telescope (JWST)
 - 1.4 m x 1 m optical aperture, spherical mirror, nominal radius of curvature $R = 4600\text{mm}$
 - LR stationed near center of curvature (CC)
 - LR metrology $\text{RoC} = 4600.075 \pm 0.005\text{mm}$
 - LT metrology $\text{RoC} = 4600.00 \pm 0.11\text{mm}$
 - SMR measured touching the mirror’s surface at different points
 - LR metrology advantages
 - Reduced tooling needs, non-contact, lower risk of hardware damage,
 - Lower labor costs,
 - In-situ with fabrication equipment,
 - Improved accuracy,
 - Faster

~ 4000 points LR metrology surface scan

LR positioned near CC to enable scanning entire surface [5]
Introduction - continue

- LR unique ability to scan wide range from matte-finish/mechanical to specular surfaces allows measuring
 - delicate surfaces,
 - tight and hard-to-reach parts,
 - or hazardous materials
- Example: Non-contact measurement of small blind gaps between JWST Primary Mirror Segment Assemblies (PMSAs)

One of LR stations used to scans to JWST PMSA vertices to calculate blind gaps between adjacent PMSAs sample LR scans [6]
Instruments and targets - LR

- Nikon MV-224 [8]
- Field of view specs: Range ~1 to 24 m, azimuth ±200°, elevation ±45°
- Very large dynamic range enabling measurement of many different surface and target types
 - Inexpensive, specular, tooling balls (TB) used for point-like coordinate system references (center detected based on radius save in TB measurement profile)
 - Various fast scan types possible
- Measurement uncertainty (1-sigma)
 - Range: ~5 μm, 1.25 ppm
 - Axes orthogonal to range direction: ~0.7 arcsec
 - Further improvement possible via SA USMN and similar algorithms
- Control software: SpatialAnalyzer (SA)
- Portable
- Automation possible
Instruments and targets - LT

- Leica Absolute Tracker AT402 [9]
- Ultra large volume metrology: Range < 160 m, azimuth 360°, elevation 290°
- Proven Absolute Distance Meter (ADM) technology
 - ADM resolution = 0.1 μm
 - maximum uncertainty (1 sigma) = 10 μm over a full radial volume
- All-in-one system design includes key accessories; e.g. built-in camera and environmental monitoring
- Control software: SpatialAnalyzer (SA)
- Ultra portable
- Semi automation possible
Calibrated target

- Powered optical surface will generally cause power and astigmatism in incident “through” light limiting ability to measure in reflection
- LT directly measures vertex of SMR in reflection (if measurement doesn’t fail)
 - LT D&T measurement using SMRs
- LR determines TB center based on radius saved in the TB measurement profile and will fail if TB, in reflection, magnified or distorted
 - LR D&T measurements require point grid-like target
- Custom made target
 - 1”x2” reflector grid using stripes of reflective 3M and black Kapton tapes
 - Base plate supports 5 reference 0.5” TBs, replaceable with SMRs for LT measurement
 - Target reference TBs/SMRs used for transformation when points out of LS
Data collection

- The “direct” or actual object points measured during D&T data collection if within instrument LS
- “Through” measurements are along instrument-image LS (target measurements in reflection)
- “Through” points = CMI measurement in reflection if powered mirror were replaced by small flat mirrors tangent to surface at through ray-mirror intercepts.

AT402 D&T measurement of 3 SMRs, testing OAP mirror, from 3 stations
• When out of LS, calibrated target points transformed by best fitting calibration reference targets to measured ones to get “direct” target positions

Target out of LR sight during D&T measurement as it faces mirror while enough TBs measurable and used to transform calibrated target points.
Data collection-OAP

- Vendor, Space Optics Research Lab, specs
 - Focal length (FL), vertex = 60.000” ± 0.300”
 - Clear aperture (CA) = 12.00”
 - Off-axis distance = 4.44” ± 0.050” to inner edge of mirror
 - Surface accuracy = lambda/8 P-V over any 99% of CA

- 3 LR stations located via Unified Spatial metrology network (USMN) (OAP and target reference TBs as tie points)
p-01 “through” targets; actual path of LR beam in “through” measurements colored orange
Data collection-OAP crosscheck

- LR positioned close to CC to scan entire OAP
- 0.5 mm point spacing ; 1.5 mm line spacing
- 332255 points collected and fit to conic surface formula
Data collection-Convex sphere

- FL = -129.20 ± 2.58 mm
- CA = 50 mm

Convex sphere seen in SA interface and grid target seen in reflection

Mirror mount scan

“Through” target scan
Data collection-Convex sphere

Showing target reference TBs and 1 of the 50 grid points calculated from the D&T scans.
Data collection-Convex sphere

“Direct” points and "through" target LR scan measured from station1 and corresponding "through" ray-surface intercept point and fold planes

D&T grid points and ray intercepts resulting from 3 LR stations
Analysis

- **LR pre analysis**
 - Calculate grid points from target scan point clouds (LR fails to measure TBs in reflection)
 - Done with custom Measurement Plan (MP) in SA

- **Preliminary analysis**
 - Analysis and data export using custom SA MP
 - Simple law of reflection
 - Line between actual/direct, “D”, and apparent/through, “T”, points → fold plane/test surface normal
 - Mid point between D and T targets → fold plane offset
 - Intersection of instrument-image LS, T-ray, with fold plane → surface intercept

- **Surface intercept and direction cosine data processed with custom developed MATLAB optimization code**
 - Data fit to conic surface formula for optimum RoC and k
 - Sphere is initial solution.
PoC study results

● OAP
 ■ Nominal RoC = 3048 ± 7.62 mm

<table>
<thead>
<tr>
<th>Method</th>
<th>Total # points</th>
<th># Points ignored</th>
<th>RoC</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR vision scan</td>
<td>332255</td>
<td>1808</td>
<td>3047.501</td>
<td>-0.9976</td>
</tr>
<tr>
<td>LR D&T</td>
<td>150</td>
<td>27</td>
<td>3047.208</td>
<td>-1.0041</td>
</tr>
<tr>
<td>LT D&T</td>
<td>11</td>
<td>0</td>
<td>3047.809</td>
<td>-1.0000</td>
</tr>
</tbody>
</table>

● Convex sphere
 ■ Sphere fit in SA: RoC = -258.428 mm
 ■ RMS error = 0.031 mm
 ■ Total # points = 150; # ignored = 8
 ■ Nominal RoC = -258.40 ± 2.58 mm
 ■ Convex sphere couldn’t be tested using LT D&T or LR vision scan
Summary

- PoC study to use CMIs to characterize concave conic and convex spherical mirrors
- Calibrated grid target position, using reference TBs, transformed to obtain “direct” positions
- Apparent target position measured along instrument-image LS
- D&T measurements yield “through” ray-surface intercept and optical surface slope by applying law of reflection
- Surface intercepts ad slopes are fit to conic surface formula for optimum RoC and k

- CMI optical testing advantages
 - Non-contact test, lower risk of hardware damage,
 - greater dynamic range of prescriptions and increased flexibility (setups similar for different prescriptions of test mirrors),
 - in-situ, no need to remove test article from fabrication/integration setup,
 - utilizes same metrology solution, LR/LT, for multiple stages of telescope assembly and testing,
 - relatively fast,
 - can be automated to lower labor costs and reduce human error

- Applications to large telescope development
 - Offer alternate mirror prescription verification method that does not require additional GSE
 - Guide mirror assembly and alignment
 - Coarse co-phasing of segmented mirrors
Future work

- Make a high precision point grid target
 - Larger size, more grid points, and more reference targets
- Improve point grid finder MP
 - Enhanced functionality for both flat and curved/distorted surfaces ("through" target case with fast mirrors)
- Automate D&T data collection
- Improve conic fit optimization code
- Evaluate uncertainties and limitations to powered surface testing using D&T method
- Characterize and align multiple hard-to-test surfaces using conventional methods
 - Large conic convex mirror (space telescope secondary mirror, M2, spare)
 - Freeform mirror,
 - Or deformable mirror
- Use cascaded D&T method to align fiducial-free individual surfaces in assembled optical system
 - Individual mirrors assumed well characterized
 - Cassegrain telescope secondary mirror 6 degree-of-freedom (DOF) alignment to mechanical system under well known movement
 - Measuring /trending effective focal length application
Acknowledgements

- We gratefully acknowledge support from
 - NASA’s James Webb Space Telescope project at the Goddard Space Flight Center
 - Sierra Lobo Optics group, led by Kevin Redman, for providing technical support
References

6. https://www.reddit.com/r/nasa/comments/5xuu8y/metrology_examinations_using_radar_lasers_are/

8. “Introduction to Large Scale Portable Metrology” PPT presentation, Nikon Metrology, Inc., Manassas, VA.

Additional slides
Cascading D&T method for aligning fiducial-free surfaces

- PoC study: Measuring/trending effective FL
 - Work at early stages and not published
- 2-mirror system
 - M1: OAP, 60” FL, 12” diameter
 - M2: Sphere, 60” FL, 6” diameter
- Target placed near focus, at 3 positions
- LR beam collimated via instrument advanced settings
- D&T measurement of custom grid target before and after moving M2
- Grid points calculated from scan using an SA MP (as before)
 - 50 points per position
Optimization code initial solution
- Assumes approximate knowledge of mirror 1 vertex sphere (M1-CC point)
- 1st plane of incidence, Pi1, includes points: M1-CC, I, & T
- T-ray (I-T line) intersect with M1 sphere = M1 (intercept)
- T’-ray = reflected [I-M1] about M1 surface normal, line [M1-CC]
- T’ point, through M2, constructed from constraint: [M1-T] = [M1-T’]
- 2nd plane of incidence, Pi2, includes points: M1, D, & T’
- M2 surface normal at intercept || [T’-D]
- Bisect = cross([T’-D] & Pi2 normal)
- M2 (intercept) = intersect(Bisect & T’-ray)
Optimize M1&M2 intercepts

- M1 intercepts follow conic/aspheric surface formula
- Magnitude constraints:
 - \([M1-T] = [M1-T']\)
 - \([M1-T] = [M1-M2] + [M2-D]\)
 - \([M2-D] = [M2-T']\)
- Co-linearity constraints:
 - \([I-M1]\) collinear with \([M1-T]\)
 - \([M1-M2]\) collinear with \([M2-T']\)
RMS error of calculated M2 ray intercept to M2 calibrated sphere < 50 μm

<table>
<thead>
<tr>
<th>Statistic</th>
<th>dX (mm)</th>
<th>dY (mm)</th>
<th>dZ (mm)</th>
<th>Mag (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>-0.0074</td>
<td>-0.0022</td>
<td>-0.0009</td>
<td>-0.0843</td>
</tr>
<tr>
<td>Max</td>
<td>0.0808</td>
<td>0.0242</td>
<td>0.0015</td>
<td>0.0077</td>
</tr>
<tr>
<td>Average</td>
<td>0.0396</td>
<td>0.0121</td>
<td>0.0001</td>
<td>-0.0414</td>
</tr>
<tr>
<td>StdDev from Avg</td>
<td>0.0229</td>
<td>0.0070</td>
<td>0.0006</td>
<td>0.0239</td>
</tr>
<tr>
<td>StdDev from Zero</td>
<td>0.0461</td>
<td>0.0140</td>
<td>0.0006</td>
<td>0.0482</td>
</tr>
<tr>
<td>RMS</td>
<td>0.0456</td>
<td>0.0139</td>
<td>0.0006</td>
<td>0.0477</td>
</tr>
<tr>
<td>In Tol</td>
<td>50 (100.0%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Tol</td>
<td>0 (0.0%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Count | 50
PoC measuring/trending effective FL- continue

- 6 DOF transformation from non-contact, fiducials-free, LR D&T measurement of a 2-mirror system agrees with best-fit transformation of target reference TBs
- Effective focal length can be calculated based on the optical surface prescription and the calculated location/orientation using raytracing software such as ZEMAX
- Further improvement is possible by
 - Improving optimization algorithm and imposing more constraints on M2 intercepts
 - Improving D&T measurement (PG Target, scan settings & point processing)

Best fit transformation of target reference TBs (Moved TBs to initial TBs)

<table>
<thead>
<tr>
<th>Results</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Max Error</td>
<td>0.0009</td>
<td>0.0025</td>
<td>0.0022</td>
<td>0.0027</td>
</tr>
<tr>
<td>RMS Error</td>
<td>0.0006</td>
<td>0.0016</td>
<td>0.0014</td>
<td>0.0021</td>
</tr>
<tr>
<td>StdDev Error</td>
<td>0.0006</td>
<td>0.0017</td>
<td>0.0015</td>
<td>0.0024</td>
</tr>
<tr>
<td>Max Error (all)</td>
<td>0.0009</td>
<td>0.0025</td>
<td>0.0022</td>
<td>0.0027</td>
</tr>
<tr>
<td>RMS Error (all)</td>
<td>0.0006</td>
<td>0.0016</td>
<td>0.0014</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

| Transformation | | |
|-------------------------|------------|
| Translation (mm) | -9.4261 |
| Rotation (deg) | |
| Fixed XYZ | 0.0014 |
| Euler XYZ | -0.0105 |
| Axis-Angle | -0.0150 |

| Matrix | | |
|-------------------------|------------|
| 1.0000000 | 0.000184 |
| -0.0000184 | 0.999926 |
| -0.0000120 | 0.999926 |
| 0.0000000 | 0.000000 |

Best fit transformation of calculated ray intercepts (Moved M2 ray intercepts to projected intercepts on initial M2 surface)

<table>
<thead>
<tr>
<th>Results</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Max Error</td>
<td>0.2391</td>
<td>0.1123</td>
<td>0.0938</td>
<td>0.2524</td>
</tr>
<tr>
<td>RMS Error</td>
<td>0.1418</td>
<td>0.0481</td>
<td>0.0324</td>
<td>0.1532</td>
</tr>
<tr>
<td>StdDev Error</td>
<td>0.1423</td>
<td>0.0483</td>
<td>0.0325</td>
<td>0.1537</td>
</tr>
<tr>
<td>Max Error (all)</td>
<td>0.2391</td>
<td>0.1123</td>
<td>0.0938</td>
<td>0.2524</td>
</tr>
<tr>
<td>RMS Error (all)</td>
<td>0.1418</td>
<td>0.0481</td>
<td>0.0324</td>
<td>0.1532</td>
</tr>
</tbody>
</table>

| Transformation | | |
|-------------------------|------------|
| Translation (mm) | -9.8038 |
| Rotation (deg) | |
| Fixed XYZ | -0.0032 |
| Euler XYZ | -0.0185 |
| Axis-Angle | -0.02674 |

| Matrix | | |
|-------------------------|------------|
| 1.0000000 | 0.000324 |
| -0.0000324 | 0.999927 |
| -0.0000120 | 0.999927 |
| 0.0000000 | 0.000000 |

| Scale Factor | 1.0000000 |
| Working frame| OAP 02032018::Frame-Parent |