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Spaceflight Countermeasures

Exercise
Lower body negative pressure/blood flow occlusion
Artificial gravity TSRS




Computational Models Used to Inform Spaceflight Countermeasure Design
and Efficacy Prediction & 2 . :
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Biomechanical Modeling

« Estimation of kinematics, joint torques, RIS
g _ : R
muscle forces and joint reaction forces » B L B

« Dataincludes: motion data,
ground reaction forces, device loads
and subject anthropometrics
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Applications of Biomechanical Modeling

« Comparison of new exploration exercise
devices to ground-based free weight
exercises

« Determination of exercise operational volume LW
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Musculoskeletal Modeling
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Applications of Musculoskeletal Modeling

Predictions of the likelihood of bone fracture Comparison of pre- and post-flight mean
~ I bone strengths associated with ISS
missions to applied loads
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Cardiovascular and Ocular Modeling

A human body model of cardiovascular, cerebral spinal, interstitial and lymphatic fluids that provides mean arterial
pressure (MAP) and intracranial pressure (ICP) in response to gravity-driven fluid shifts

A lumped eye model that provides intraocular pressure (IOP) and globe and blood volume estimates

» A finite element model of the optic nerve head that includes tissue properties so that tissue strains can be estimated

when subjected to different MAP, ICP and IOP
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Support Visual Impairment and
Intracranial Pressure (VIIP) syndrome
research

Provide insight on how intraocular pressure and
aqueous humor volume change during acute
gravitational changes

Determine physiological factors that most affect the IOP
changes

Explore the hypothesis that the pathology of VIIP is due
to altered biomechanical loads on ocular tissues, which
causes remodeling of the ocular tissues

Determine factors with the largest influence on strain

Determine characteristics describing the population that
would experience peak strains in the optic nerve during
microgravity

Inform countermeasure design

— Incorporate countermeasures simulation capabilities into

compartment models to evaluate the effects of
microgravity and countermeasures on CSF and blood
flows and pressures
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Conclusions

« Computational modeling can be used to support spaceflight research and countermeasure design

— Develop and perform simulations to test hypotheses
— Determine key factors of the system to aid experimental design

« Computational modeling can be used to perform simulations that reduce the number of required

experimental tests
— Provide predictions and answers to ‘What If?" questions

— Perform simulated experimental trials
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