

Kevin Driscoll

This work was performed under NASA contract NNC11BA15B.

Honeywell

Reduced Crew Operations (RCO) would be more than "Flight Management on steroids"

An RCO system will

- have to be highly invasive into most, or all, existing safety-critical aircraft systems
- require a highly-reliable data communication system that offers very low latency and jitter, as well as high data integrity and authentication

- Cockpit Crew (CC) vs Ground Crew (GC)
 - CC is flying, GC is just standby redundancy
 - CC is flying, GC is active second pilot
 - GC is flying, CC is active second pilot (PNF)
- GC is flying, CC is just standby creates
 - GC is flying, CC is an adversary or is suicidal?! CC is flying, GC is an adversary (spoofed)?!?!

mutually exclusive

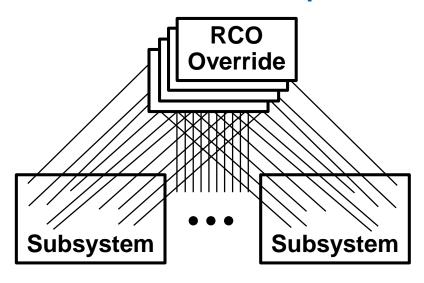
- Can RCO be used to assist (partially) able-bodied airborne crew?
- ... totally incapacitated airborne crew?
 - In the UK, there were 32 in 2009 and 36 in 2004 (~1 per 10 days)
- Can a GC via RCO be used to override a "rogue" cockpit crew?

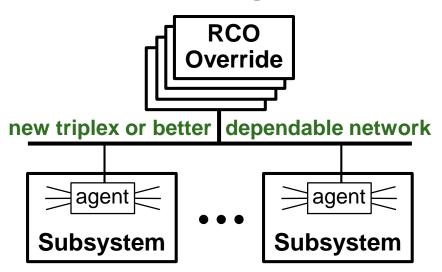
Traditional 3 layers of aircraft control automation

more authority, but more stringent latency - Flight Management System

- Auto Pilot

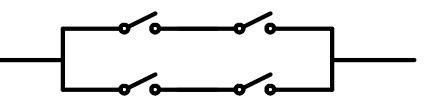
Flight Control Controls


Controls

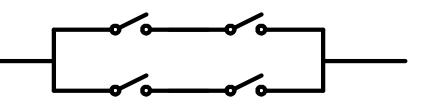


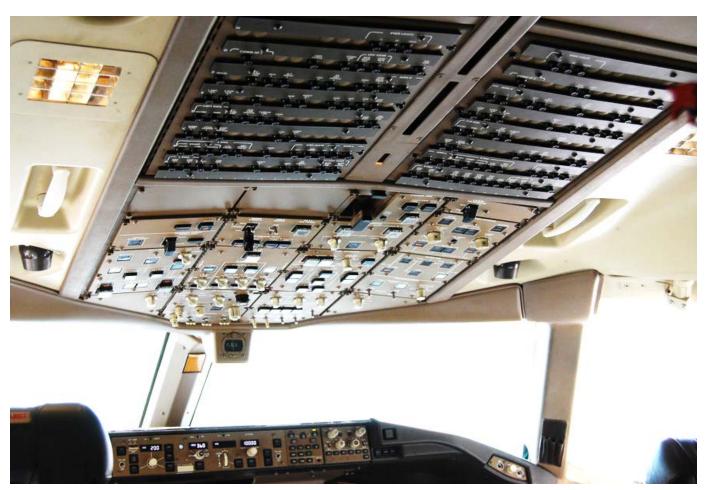
RCO System Architecture

Centralized "Porcupine"



Remote Agents


RCO Fault Tolerance


- An RCO system would need to be Byzantine fault tolerant
- Some/most actuators would have to be quad redundant

- An RCO system would need to be Byzantine fault tolerant
- Some/most actuators would have to be quad redundant

- Not much R&D done for aircraft RCO safety/security
- Looked at R&D done in adjacent fields
 - UASs (drones)
 - Autonomous ground vehicles (shared control)
 - "Right now, there's no good answer, which is why we're kind of avoiding that space"
 - -- Dr. Ken Washington Ford VP

Control Hand-Back Problems

Paul Schutte:

- "computers [...] give up at the first sign of trouble"

Scenarios

- When at the controls, time to regain situational awareness
 - Air Canada 878: napping
 - Audi
 - Qantas Flight 32
- Time to get to the controls, when in cockpit
 - Aeroflot 593: kids at the controls
- Time to get to the controls, when out of cockpit
 - Delta (Chautauqua) 6132: captain stuck in the WC

Typical Abnormality Requiring Crew to Leave Cockpit

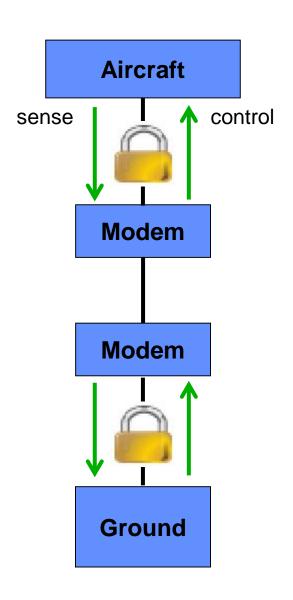
Honeywell

- Individuals
 - Officially called "phantom controllers"
 - UK: 18 times in 1999
 - Jim Epik's book "Phantom Controller" and petition to encrypt ATC
- Groups
 - 1981 PATCO
 - Opposing factions in civil wars
- Nation-State sponsored
- Yes, we have to assume there will be bad actors who are out to get us.

Some Crypto Key-Management Issues

- Two aspects of key-management
 - Trust
 - Logistics
 - Key distribution and management
 - Distribution needs secrecy even if these keys are used only for authentication, not secrecy!
- Invention to mitigate logistic issues for avionics
 - No secrets stored on aircraft
 - Simplifies the airborne side of link
- •Issue: Whose keys?
- (Inter)national cryptography laws

Cryptography Import Laws


Country	Status	Updated
Angola	Unknown₽	2000
Armenia	Green/Yellow ₽	2000
Bahrain	Yellow⊮	2008
Belarus	Red₽	2008
Brunei Darussalam	Yellow/Red ₽	2000
Cambodia	Yellow₽	2008
Canada	Green ₽	2015
Czech Republic	Green/Yellow ₽	2008
China	Yellow ₽	2008
Egypt	Yellow ₽	2007
Ghana	Green ₽	2008
Hong Kong	Green/Yellow ₽	2008
Hungary	Green/Yellow ₽	2008
India	Green/Yellow ₽	2008
Iran	Yellow ₽	2008
Iraq	Rede	2000
Israel	Yellow ₽	2008
Khazakstan	Yellow ₽	2008
Latvia	Yellow ₽	2008
Lithuania	Yellow ₽	2008
Malta	Yellow₽	2000

Country	Status	Updated
Moldova	Yellow ₽	2008
Mongolia	Redd	2000
Morocco	Yellow 🗗	2008
Myanmar (Burma)	Rede	2008
Nepal	Unknown₽	2000
Nicaragua	Unknown₽	2000
North Korea	Unknown/Red ₽	2008
Pakistan	Yellow⊯	2008
Poland	Green/Yellow ₽	2008
Russia	Redd	2008
Rwanda	Unknown₽	2008
Saudi Arabia	Green ₽	2008
Singapore	Green ₽	2008
South Africa	Green/Yellow ₽	2008
South Korea	Yellow ₽	2008
Tatarstan	Unknown₽	2000
Tunisia	Yellow/Red ₽	2008
Turkmenistan	Redd	2000
Ukraine	Yellow 🗗	2007
Uzbekistan	Redd	2000
Vietnam	Yellow 🗗	2008

- Red: Total ban
- Yellow: License required for importation
- Green: No restriction

Taken from:
en.wikipedia.org/
wiki/Restrictions_
on_the_import_of
_cryptography

Latency Problem?

Does the sum of all these added latencies exceed the round-trip latency constraints?

- Slow startup for each key change
- Use too much data memory
- Need more communication bandwidth
- Use separate secrecy and integrity algorithms or added integrity mode
- Many new cyber-physical cryptography installations will be retrofits, which further exacerbates the above problems
- These are the reasons we created an algorithm (called BeepBeep) specifically for real-time and/or retro-fit applications.

A high-capability RCO system:

- May introduce significant safety and security hazards
- Could be a "single point of failure" for the entire aircraft

Technology not ready yet

- Research is needed into designing multi-chapter "Level A+" systems
- Research is needed into the use cryptography for low-latency and international applications
- RCO capability may be acceptable in the more near term for Part 135, cargo flights, and/or restricted routes and airfields

Thank you for your attention.

Questions?