

High Temperature Degradation of Advanced Thermal and Environmental Barrier Coatings (TEBCs) by CaO-MgO-Al2O3-SiO2 (CMAS)

GUSTAVO COSTA AND DONGMING ZHU

Environmental Effects and Coatings Branch
Materials and Structures Division
NASA Glenn Research Center, Cleveland, OH 44135
gustavo.costa@nasa.gov

12th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM 12)

Outline of Presentation

- Thermal and Environmental Barrier Coating Systems
- Experimental
- Sample preparation and reaction with CMAS
- Results
- Thermodynamic modeling of YSZ-CMAS system
- Characterization:
- 1 Pristine NASA composition CMAS by XRD, ICP-OAS and DSC
- 2 CMAS reacted with the hollow tube coating specimens by SEM-EDS and XRD
- Summary

Thermal and Environment Barrier Coating Developments

Baseline ZrO₂-(7-8)wt%Y₂O₃ and Rare Earth Doped-Low Conductivity Thermal Barrier **Coating Systems - Continued**

Baseline ZrO_2 -(7-8) wt% Y_2O_3 :

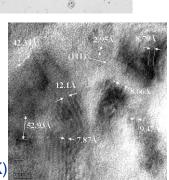
- Relatively low intrinsic thermal conductivity ~2.5 W/m-K
- High thermal expansion to better match superalloy substrates
- Good high temperature stability and mechanical properties
- Additional conductivity reduction by micro-porosity

Low Conductivity Defect Cluster Thermal Barrier Coatings

Multi-component oxide defect clustering approach

e.g.: $ZrO_2/HfO_2-Y_2O_3-Nd_2O_3(Gd_2O_3,Sm_2O_3)-Yb_2O_3(Sc_2O_3)$ systems

Primary stabilizer



Oxide cluster dopants with distinctive ionic sizes

- Defect clusters associated with dopant segregation
- The 5 to 100 nm size defect clusters for significantly reduced thermal conductivity (0.5-1.2 W/m-K) and improved stability
- Advanced TEBC systems for Ceramic Matrix Composites use the low k based compositions

TEBCs-CMAS Degradation is of Concern with Increasing **Operating Temperatures**

Ceramic coating

NiCrAlY Bond coat -

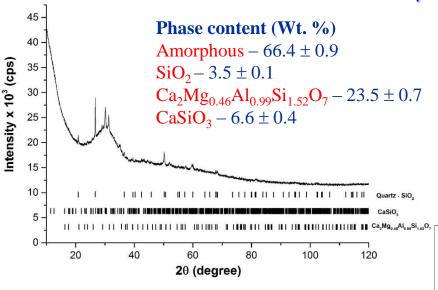
Plasma-sprayed ZrO₂- $(Y, Nd, Yb)_2O_3$

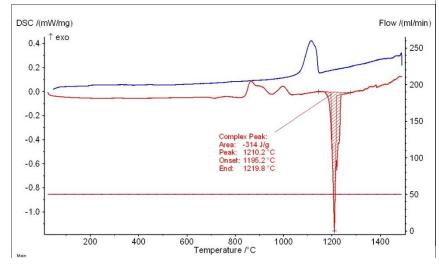
Experimental:sample preparation and heat treatment

- Air plasma sprayed coating (0.030" thickness) specimens on to 1/8" diameter graphite bar substrates then 1500 °C, 5 h sintering, resulting hollow tubes.
- NASA composition CMAS used for reaction at 1300 ° C for 5h.

		Hollow Tube composition mole (%)	ρ(%) *	Average pore vol.
Pt foil →	3 mm -cut			(mm ³) **
T CIOII		$ZrO_2-12Y_2O_3$	90(3)	35(2)
CMAS_powder	XRD and	ZrO_2 - $30Y_2O_3$	81(3)	-
	SEM-EDS cubic -	HfO_2 - $7Dy_2O_3$	89(3)	21(3)
	1	ZrO_2 - $9Y_2O_3$ - $4.5Gd_2O_3$ - $4.5Yb_2O_3$	100 (3)	3(7)
	13 mm -cut	ZrO_2 - 9.6 Y_2O_3 - 2.2 Gd_2O_3 - 2.1 Yb_2O_3	90(3)	23(4)
	tetragonal	ZrO_2 - $3Y_2O_3$ - $1.5Nd_2O_3$ - $1.5Yb_2O_3$ - $0.3Sc_2O_3$	90(3)	20(3)
		ZrO ₂ - 3Y ₂ O ₃ -1.5Sm ₂ O ₃ -1.5Yb ₂ O ₃	98(3)	4(3)
	· ·	ZrO_2 - $9.6Y_2O_3$ - $2.2Gd_2O_3$ - $2.1Yb_2O_3$ ZrO_2 - $3Y_2O_3$ - $1.5Nd_2O_3$ - $1.5Yb_2O_3$ - $0.3Sc_2O_3$	90(3) 90(3)	23(4) 20(3)

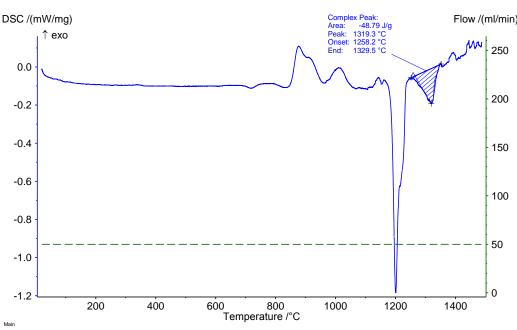
*(ρ geometric*100/ ρ He). ** ρ geometric- ρ He.


(1:10 CMAS to sample mass ratio, concentration of 70-150 mg/cm²)


Hollow 12YSZ tube samples: (A) pristine; (B) before heat treatment in which it was half filled with CMAS powder, wrapped and sealed with Pt foil; (C) after heat treatment at 1310 °C for 30 min and unwrapped.

Results: characterization of NASA composition CMAS (as processed) before reaction

X-ray diffraction patterns of the as-received CMAS sample.



DSC traces of CMAS during heating and cooling up to 1500 °C at 5 °C/min.

Chemical analysis of the as-received NASA CMAS by ICP-OAS

Element	Amount (wt. %)	±
Ca	21	1
Mg	3.1	0.2
Al	6.1	0.3
Si	19	1
Fe	5.9	0.3
Ni	1.10	0.06

Trace elements found but not quantified are Ba, Cr, Cu, K, Mn, Na, Sr, Ti, Zr

DSC traces of CMAS mixed with 18YSZ (1:2 mass ratio) during **heating** up to 1500 °C at 5 °C/min.

Results: Thermochemical modeling of YSZ - CMAS system using National Aeronautics and Space Administration Thermocalc and TCOX6 database TCOX6: ALO1.5, CAO, MGO, SIO2, Y1O1.5, ZRO2, NIO, FEO1.5, O P=1.01325E5, N=1., 35*X(MGO)-8*X(CAO)=1.97196E-11, 8*X(ALO1.5)-7*X(MGO)=-6.67894E Ionic liquid + Apatite + t' and c ZrO2 Ionic liquid + Apatite + t' ZrO2 Reaction T of the experiments Ionic liquid + t' ZrO2 1300 Melilite + Apatite + t' and c ZrO2 Ionic liquid + Spinel + Apatite + t' ZrO2 Calculated phase diagram Ionic liquid + Spinel + t' ZrO2 of CMS-YSZ system. 1250 -Ionic Liquid + Spinel + Ca3Y2Si3O16 + t' ZrO2 lonic liquid + Spinel + Pseudo Wollastonite+ t' ZrO2 Ionic liquid + Spinel + Mililite + Apatite + t' and c ZrO2 TEMPERATURE (°C) ionic liquid + Spinel + Mililite + Apatite + t'ZrO2 + Ca3ZrSi2O4 + t' and c ZrO2 lonic liquid + Spinel + Wollastonite+ t' ZrO2

Input oxide amounts

Component	Mole
CaO	35
MgO	8
Al_2O_3	7
SiO ₂	45
Fe ₂ O ₃	3
NiO	1
ZrO ₂	82
Y ₂ O ₃	18

8 mol% Y₂O₃

2.3 mol% Y₂O₃ **Baseline TBC**

0.020

1150

1100+

0.000

Output: T - 1316.85 °C

0.040

Anorthite + Melilite + Spinel + Wollastonite + corundum + Clino_pyroxene + Apatite + t' ZrO2

lonic liquid + Melilite + Spinel + Wolastonite + Clinopyroxene + t' ZrO2

riuoride		
Component	Mol	
CaO	1.7e-2	
MgO	2.5e-3	
FeO _{1.5}	1.7e-7	
AIO _{1.5}	1e-3	
NiO	4.4e-3	
SiO ₂	3.0e-5	
ZrO ₂	8.9e-1	

Y101.5 mole fraction

0.080

8.4e-2

Anorthite + Melilite + Spinel + Wollastonite + Clino pyroxene + Apatite + t'ZrO2

Ionic liquid +Spinel + Melilite + Wollastonite + Apatite + t' ZrO2

Ionic liquid + Melilite + Spinel + Wollastonite + Clinopyroxene + Apatite + t' ZrO2

0.060

Eluorido

Y₁O_{1.5}

ZrO₂_tetragonal Mol Component CaO 8.1e-3 MgO 5.1e-5 FeO_{1.5} 8.6e-8 NiO 3.8e-3 ZrO₂ 9.7e-1

0.120

1.8e-2

0.100

Y101.5

Apatite Mol Component CaO 1.1e-1 MgO 2e-4 SiO₂ 2.7e-1 Y₁O_{1.5} 6.2 e-1

Melilite + Apatite

0.140

Ionic_liq#2

Component

CaO

MqO

SiO₂

NiO

ZrO,

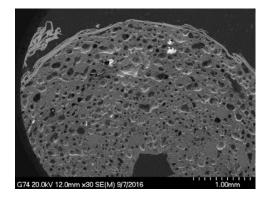
FeO_{1.5}

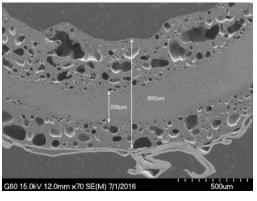
Mol

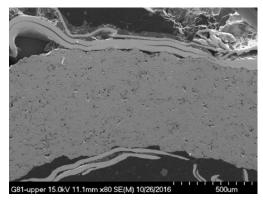
2.8e-1

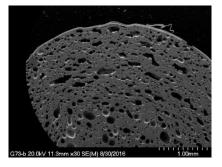
9.3e-2

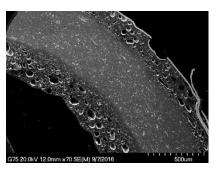
3.8e-1

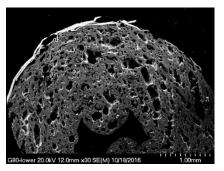

9.3 - 1

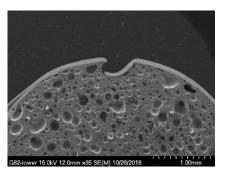

2.2e-2


2.7e-2


Results: SEM cross-section images at low magnification (lower cut section)

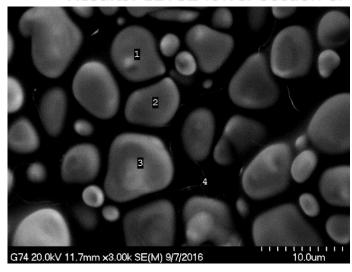




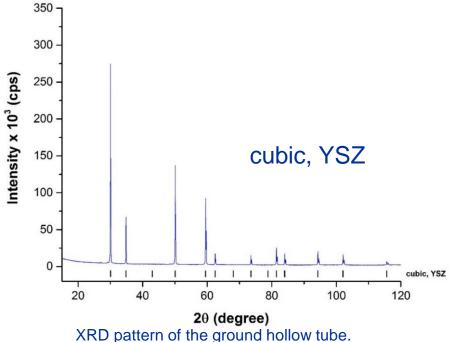


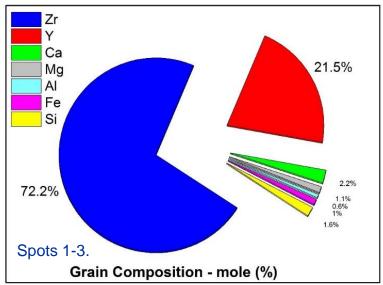
12YSZ 30YSZ 7DySH

 ZrO_2 -9.0 Y_2O_3 -4.5 Gd_2O_3 -4.5 Yb_2O_3

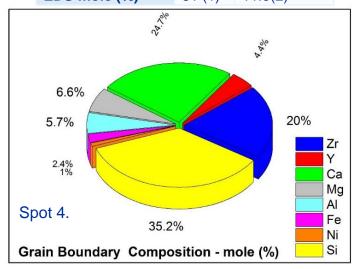

ZrO₂-9.6Y₂O₃-2.2Gd₂O₃-2.1Yb₂O₃

 ZrO_2 -3.0 Y_2O_3 -1.5 Sm_2O_3 -1.5 Yb_2O_3

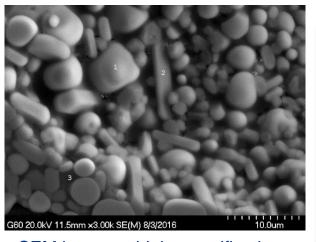

 ZrO_2 -3.0 Y_2O_3 -1.5 Nd_2O_3 -1.5 Yb_2O_3 -0.3 Sc_2O_3

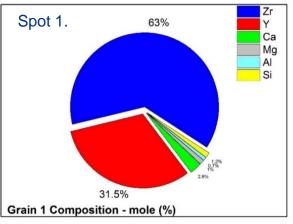

SEM cross – sectional electron images of the lower section of the ceramic hollow tube samples reacted with CMAS at 1300 °C for 5 h.

Results: 12YSZ lower section of the hollow tube reacted with CMAS.



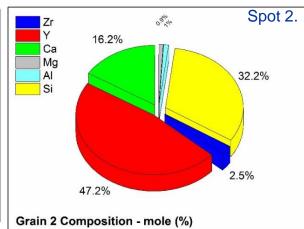
SEM image of (reacted region) at high magnification.

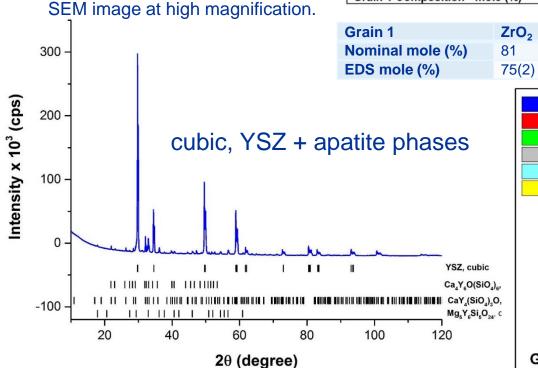

Grains 1-3	ZrO ₂	Y ₂ O ₃
Nominal mole (%)	88	12
EDS mole (%)	81 (1)	11.9(2)

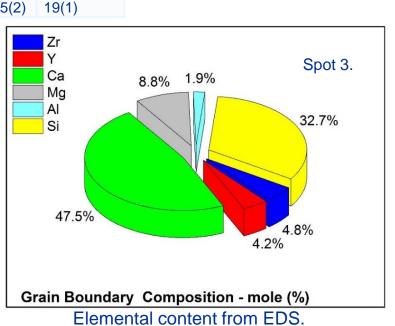


Elemental content from EDS.

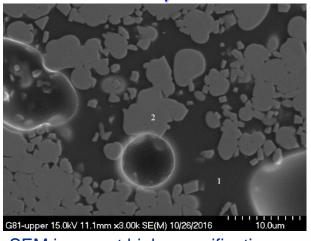
Results: 30YSZ lower section of the hollow tube reacted with CMAS.



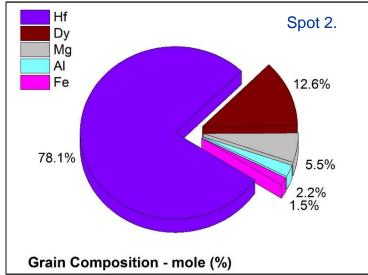



 Y_2O_3

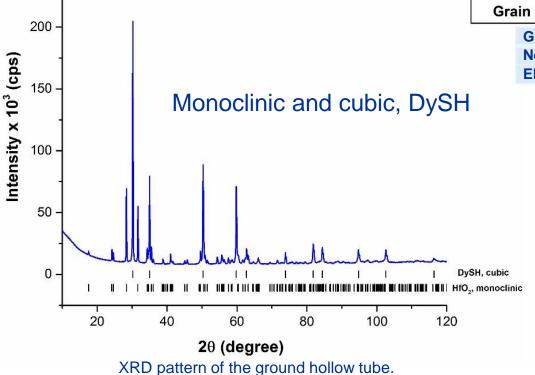
18

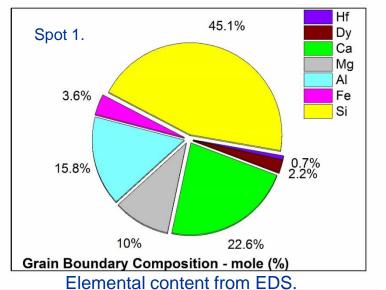


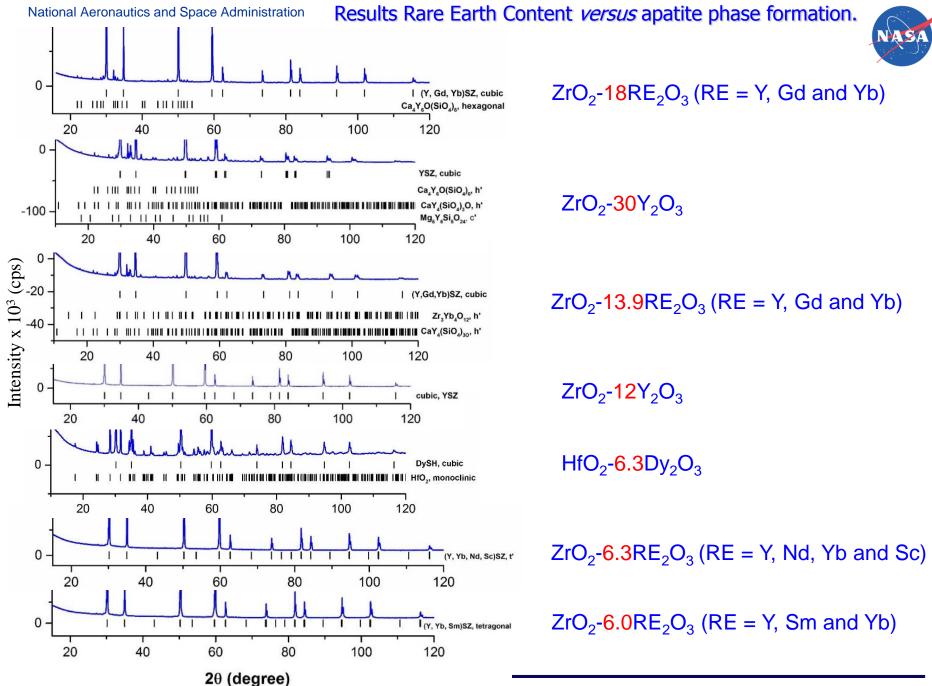
X-ray diffraction of the ground hollow tube.



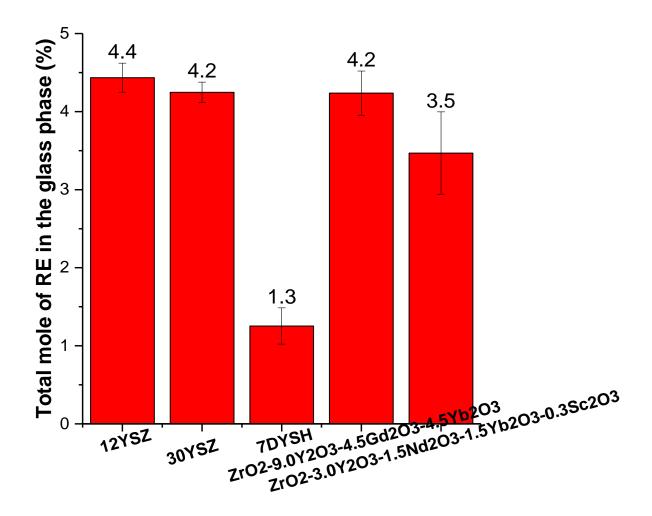
Results: 7DySH lower section of the hollow tube reacted with CMAS.



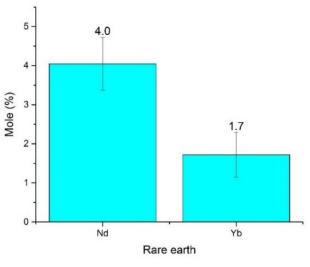


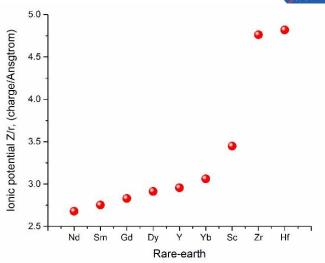


Grain 2	HfO ₂	Dy_2O_3
Nominal mole (%)	93	7
EDS mole (%)	85(5)	7(1)

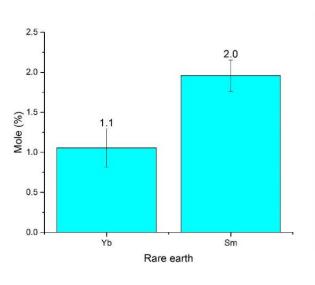


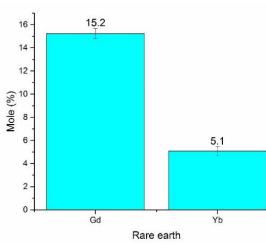
Results: content of the Rare-earth in the glass/silicate phase.

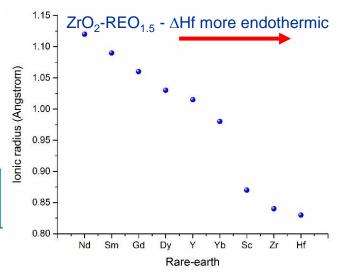



Depedence of the Rare-earth content in the glass/silicate phase versus Rare-earth content in the coating.

Results: content of the Rare-earth in the glass/silicate phase.






 $ZrO_2-3.0Y_2O_3-1.5Nd_2O_3-1.5Yb_2O_3-0.3Sc_2O_3$

Ionic potential trend of RE

ZrO₂-9.6Y₂O₃-2.2Gd₂O₃-2.1Yb₂O₃

Radius size trend of RE

Summary

- Thermochemical reactions between CMAS and EBC and TBC materials were studied at 1310 °C for 5h.
- CMAS penetrated the samples at the grain boundaries and dissolved the EBC/TBC material to form silicate glassy and orthosilicate crystalline phases containing the rare-earth elements.
- Apatite crystalline phase was formed in the samples with rare-earth content higher than 12 mole (%) total of Rare-earths in the reaction zone.
- 7DySH, ZrO₂-9.5Y₂O₃-2.2Gd₂O₃-2.1Yb₂O₃ and 30YSZ samples had lower reactivity or more resistance to CMAS than the other coating compositions investigated in this study.

Acknowledgements

This work was supported by NASA Transformational Tools and Technologies Project, and also partially supported by the NASA-Army Research Laboratory Collaborative High Temperature Functionally Graded Sandphobic Coating and Surface Modification Research Project under NASA-Army Space Act Agreement SAA3-1460-1.