

An Introduction to Atomic Layer Deposition

Dr. Vivek H. Dwivedi NASA GSFC Code 545

What is a Thin Film?

Thin film: thickness typically <1000nm.

Special properties of thin films: different from bulk materials, it may be –

- Not fully dense
- Under stress
- Different defect structures from bulk
- Quasi two dimensional (very thin films)
- Strongly influenced by surface and interface effects

Other Deposition Techniques

1. Precursor gas phase reaction

- 2. Diffusion
- 3. Adsorption
- 4. Surface Process
- 5. Desorption 6. Diffusion
- 7 Durge
- 7.Purge

Common Denominator

- •Deposition only occurs on substrates that "see" the target.
- •Plasma process can damage the substrate
- Poor thickness control
- •Poor Step Control
- •High Pressure High Temperature Environment

Step Coverage Example

Step coverage of metal over non-planar topography.

- (a) Conformal step coverage, with constant thickness on horizontal and vertical surfaces.
- (b) Poor step coverage, here thinner for vertical surfaces.

Introduction

Atomic Layer Deposition

A thin film"nanomanufacturing" tool that allows for the conformal coating materials on a myriad of surfaces with precise atomic thickness control.

Based on:

- Paired gas surface reaction chemistries
- Benign non-destructive temperature and pressure environment
 - Room temperature -> 250 °C (even lower around 45 °C)
 - Vacuum

ALD Procedure

6

ALD Procedure

Periodic Table of ALD Films

H 1			O:Oxide N:Nitride		C:Car F:Fluc	bide oride											He 2
Li 3	Be 4		M:Metal P:Phosphide S:Sulphide/S	D:Dopant 'Asenide elenide/Telluride								ON B 5 D	<mark>С</mark> 6	N 7	<mark>0</mark> 8	F 9	Ne 10
Na 11	• Mg 12 F	 O Oxide of this element has been deposited by the ALD community P AI Si 14 C C 												<mark>Р</mark> 15	<mark>S</mark> 16	CI 17	Ar 18
<mark>K</mark> 19	Ca 20 s F	0 Sc 21	• N M Ti 22 S	♥ 23	0 Cr 24	ONM Mn 25 D	ONM Fe 26	○ N M Co 27	○ N M Ni 28	ONM CUS 29 S	○ Zn 30 S F D	ON Ga 31 D	Ge 32	As 33	<mark>Se</mark> 34	Br 35	Kr 36
Rb 37	O Sr 38 S F	о У 39	0 N Zr 40	• N Nb 41	о N M Мо 42	Тс 43	0 M Ru 44	ом Rh 45	0 M Pd 46	о м Ад 47	Cd 48 S	0 N P <mark> n</mark> 49 S	Sn 50 S	0 M Sb 51 D	<mark>Те</mark> 52	 53	<mark>Хе</mark> 54
Cs 55	0 88 56 8	0 La 57	s Hf 72 s F	ОММ Та 73 С	○ N M W 74	0 Re 75	0 0s 76	о м Ir 77	• M • Pt • 78	Au 79	Hg 80 ^s	TI 81	0 Pb 82 S D	0 Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88	Ac 89	Rf 104	Db 105	<mark>Sg</mark> 106	Bh 107	Hs 108	Mt 109									
				Се 58 р	0 Pr 59	<mark>Nd</mark> 60	Pm 61	0 Sm 62	о Еи 63 D	0 Gd 64	0 Tb 65 D	0 Dy 66	0 Ho 67	• Er 68	0 Tm 69 D	0 Yb 70	0 Lu 71
				Th 90	Pa 92	U 93	Np 94	Pu 95	Am 96	Cm 97	<mark>Bk</mark> 98	Cf 100	<mark>Es</mark> 101	Fm 102	Md 104	No 4	Lr 4

Acknowledgements

Gordon, Roy (2008). Atomic Layer Deposition (ALD): An Enable for Nanoscience and Nanotechnology.

PowerPoint lecture presented at Harvard University, Cambridge, MA.

• Elam, Jeffrey (2007). ALD Thin Film Materials. Argonne National Laboratory

Advantageous Property

Precise Thickness Control Thickness = *F*(# monolayers) **Example:** If 1 monolayer = 1 A# monolayers = 7 Thickness = 7 AReproducibility

Advantageous Property

3 c W

100 nm

7 c W

Substrate Independence

(b)

80 nn

Advantageous Property

Epitaxial Growth

Artificial trench filled with an ALD nanolaminate

Multilayer consisting of: Al2O3 - 25 nm TiN - 20 nm Al2O3 - 25 nm

Schematic of a 3D battery integrated in a Si-substrate. The cross-section shows the various functional layers in the battery stack as well as the candidate materials. *Enoops*, H.C.M. et al., ECS Trans., 25 (2009) pp. 333-344

Batch Process

Coating Silver with Aluminum Oxidi http://www.glassonweb.com/

Building off a Commercial Reactor

Commercial Options

In-House Experimental ALD System 📂

Open Source Solutions

PYBv1.1

micropython.org 🔏

Applications and Results

~1600 Au Coated Mirrors 4x10" curved 50 cm/20"diameter cartridge

ZnO

$E = \frac{hc}{\lambda}$ where:

f = frequency in Hertz (Hz = 1/sec) λ = wavelength in meters (m) c = the speed of light (299792458 m/s) E = energy in electron Volts (eV) h = Plank's constant (6.626068 × 10^{-34 m2kg}/s)

E_{zno}=3.3 eV

Blacker Than Black Carbon Nanotubes

Blacker than NASA Z306 Paint 10X Darker

NAS

"Build" Nanotubes

Atomic Oxygen Protection

100 nm on Kapton 1000 Cycles 155 °C Al₂O₃

GPM Funded an experiment at Glenn to determine AO effects on materials.

99% mass retention after a simulated5 year flux

Strategic Partnerships

INSTRUMENT SYSTEMS & TECHNOLOGY DIVISION

OPTICS BRANCH

CODE 551

Dr. Takashi Okajima (662) Mark Hasegawa (546) Dr. Manuel Quijada (551) Dr. Raymond Adomaitis (UMD) Dr. Brian Iverson (BYU) Rydge Mulford (BYU)

Questions?

NASA