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ABSTRACT: Many landslide inventories are known to be biased, especially inventories for large regions 
such as Oregon’s SLIDO or NASA’s Global Landslide Catalog. These biases must affect the results of 
empirically derived susceptibility models to some degree. We evaluated the strength of the susceptibility 
model distortion from postulated biases by truncating an unbiased inventory. We generated a synthetic 
inventory from an existing landslide susceptibility map of Oregon, then removed landslides from this 
inventory to simulate the effects of reporting biases likely to affect inventories in this region, namely 
population and infrastructure effects. Logistic regression models were fitted to the modified inventories. 
Then the process of biasing a susceptibility model was repeated with SLIDO data. We evaluated each 
susceptibility model with qualitative and quantitative methods. Results suggest that the effects of 
landslide inventory bias on empirical models should not be ignored, even if those models are, in some 
cases, useful. We suggest fitting models in well-documented areas and extrapolating across the study 
region as a possible approach to modelling landslide susceptibility with heavily biased inventories. 
 
 

INTRODUCTION 
The spatial distribution of landslide activity is often 
described by empirically derived landslide 
susceptibility maps. Empirical methods are 
frequently used, due to the “objective” nature of 
statistical and machine-learning tools. However, the 
quality of the landslide inventory used to calibrate 
landslide susceptibility models can have a 
significant impact on the accuracy of the resulting 
map (Galli et al., 2008).  
 Both random and systematic errors in landslide 
inventories may affect the quality of landslide 
susceptibility maps (Steger et al., 2016a; Steger et 
al., 2016b). Landslide inventory bias can take 
several forms. Some biases may be introduced when  

 
 
an inventory is created from information available 
from a specific point in time, often in response to a 
single catastrophic event. Event inventories may be 
dominated by a specific movement type or 
triggering mechanism, even if other behavior is 
more common. Spatial biases may also be imposed 
by the size or direction of a single triggering event, 
with effects on the distribution of some explanatory 
variables. For example, aspect might be biased by 
the direction of storm winds (Bucknam et al., 2001).  
 Remote sensing of landslides is affected by 
many factors, including cloud cover, forest cover, 
and illumination (Guzzetti et al., 2012). Remotely 
sensed inventories may also suffer from land-cover 
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biases (Steger et al., 2016a), such as the removal of 
old landslide scars by agricultural disturbance. The 
apparent landslide size distribution may be affected 
by surface cover or image resolution (Bucknam et 
al., 2001).  
 Archival inventories are known to have serious 
temporal biases (Guzzetti and Tonelli, 2004; Taylor 
et al., 2015). In addition, media reports and similar 
sources of information tend to focus on damages to 
populated areas and infrastructure. As a result, 
archival inventories often have a strong spatial bias 
toward developed areas (Guzzetti and Tonelli, 
2004; Kirschbaum et al., 2015; Taylor et al., 2015).  
 Given the variety of biases that affect landslide 
inventories, empirical hazard models may be 
degraded by the presence of systematic error in the 
training data. Oregon, a large state with extensive 
landslide records, is an ideal testbed to determine 
the effects of inventory bias on landslide 
susceptibility calculations.  

OREGON LANDSLIDE INVENTORIES 
Terrain, seismicity, climate, and development vary 
widely across Oregon. These factors influence both 
occurrence and reporting of landslides, as evidenced 
by multiple landslide inventories. Oregon’s 
population is largely concentrated in the Willamette 
valley. Frequent precipitation falls on western 
Oregon, due to the influence of the Pacific Ocean 
and the presence of major mountain ranges. In 
contrast, much of eastern Oregon consists of 
shrublands and desert. Tectonism has produced 
many volcanic peaks and soils, and the possibility 
of earthquakes and volcanism remains significant.  
 The Oregon Department of Geology and 
Mineral Industries (DOGAMI) produces a 
Statewide Landslide Information Database of 
Oregon (SLIDO) from geologic studies by several 
authoritative sources (Burns, 2014). SLIDO 
contains tens of thousands of historic and 
prehistoric landslides, stored as points, polygons, or 
scarp polylines. Nevertheless, it is not considered a 
complete record of recent landslide activity. Nor 
can SLIDO be considered an unbiased sample of 
Oregon landslides, because the scale, scope, and 
focus of early studies varies widely throughout the 
state (Burns, 2014). Most SLIDO entries are not 
associated with a specific date, but a broad date 
range is often available.  

 The Global Landslide Catalog (GLC) is not 
limited to Oregon, but it does contain hundreds of 
entries for the Pacific Northwest. The GLC includes 
landslides reported in news media, academic works, 
and other sources (Kirschbaum et al., 2010). All 
entries in the GLC are associated with a specific 
date, because the database was created to study the 
role of precipitation in triggering landslides.  
 As part of a NASA project for the National 
Climate Assessment (NCA), the GLC, SLIDO, and 
other sources of information were combined into a 
single Pacific Northwest Landslide Inventory 
(PNLI) for the purpose of identifying trends in 
landslide occurrence (Kirschbaum et al., 2016). As 
in the GLC, all entries used in this study were 
associated with a specific date, which limited the 
inventory to 3,366 landslide events in Oregon. The 
majority of these data points were derived from 
records maintained by the Oregon Department of 
Transportation (ODOT), resulting in a significant 
geographic bias near highways in the PNLI (Figure 
1). Since this reporting bias may influence the 
conclusions of any research based on the PNLI, we 
analyzed the effects of the most obvious biases of 
this inventory on a commonly used empirical 
model. 

METHODS 
 

Synthetic landslide inventories 
In order to evaluate the effects of reporting bias, it 
would be helpful to compare the effects of modeling 
with a biased dataset against the results arising from 
the use of unbiased data. Since no such landslide 
inventory exists for the whole of Oregon, we 
created a synthetic inventory as a proxy. Although 
the true locations of all historic landslides are rarely 
known, the spatial probability of occurrence is 
estimated by susceptibility maps such as the 
Landslide susceptibility overview map of Oregon 
(Burns et al., 2016). We selected 336,700 points at 
random from all locations in Oregon, but with the 
restriction that the distribution of landslide 
susceptibility at the random points match the 
distribution of landslide susceptibility in known 
historic landslides. These points formed the 
unbiased synthetic landslide inventory (Figure 1). 
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Figure 1. Landslide inventories near Mount Hood. Relatively few landslides were recorded with dates (blue), and most of 
these were located adjacent to roads. The landslide susceptibility overview map of Oregon was derived from the many 
landslides reported without exact dates (green). In turn, this map was used to generate a synthetic landslide inventory (red).
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 In order to simulate the effects of specific 
biases, the distribution of values within each biasing 
factor was determined. First, we calculated in 
ArcGIS 10.2 (ESRI, 2013) the distance from each 
point in the synthetic inventory to the nearest 
highway stored in the Global Roads Open Access 
Dataset (CIESIN, 2013). Second, the approximate 
population at each location was derived from 
LandScan data (Bright et al., 2015). Then, both 
steps were repeated for the PNLI. Compared to the 
synthetic inventory, the PNLI shows strong biases, 
with over 90% of all reported landslides within 1 
kilometer of a major highway (Figure 2). Over 50% 
of the PNLI was reported in populated areas (Figure 
3). Both of these factors may represent a mixture of 
reporting bias and slope instability due to human 
activity. However, the role of human actions, such 
as oversteepening slopes by excavation, is at least 
partially reflected in the 32.8-ft2 elevation grid used 
to generate the susceptibility map and its derivative, 
the synthetic landslide inventory. Thus, reporting 
bias is the more important cause of the difference 
between distributions. The initiation points derived 
from undated landslide deposits shows distributions 
intermediate between the other inventories. 
 
 

 
 
Figure 2. Distance to road from PNLI points (blue), undated 
initiation points (yellow), and unbiased synthetic inventory 
points (red).  
 
 
 Next, we created new versions of the synthetic 
landslide inventory by selecting data points to 
match the biased distributions observed in the 
PNLI. To create an inventory with a roads bias, the 
unbiased synthetic inventory was divided into bins, 
each representing a multiple of 1,000 meters of 

distance from a road. Data points were selected at 
random from each bin to create a sample of equal 
size to the same bin in the PNLI. The resulting 
biased inventory contained 3,366 points, the same 
as the PNLI. This process was repeated with the 
population variable to create a biased inventory 
with the same population distribution as the PNLI. 
Finally, both road and population biases were 
combined to form a fourth synthetic inventory. 
 
 

 
 
Figure 3. Estimated population at PNLI points (blue), undated 
initiation points (yellow), and unbiased synthetic inventory 
points (red).  
 
 
Biasing the historical record 
In addition to examining the effects of biasing a 
hypothetically complete inventory, we performed 
the same procedure on a relatively complete 
inventory: the undated polygons from SLIDO. This 
inventory contains 41,029 polygons, in a wide 
variety of sizes and types (Figure 1).  In order to 
avoid fitting an empirical model on the basis of 
large runout zones, initiation points for these 
landslides were approximated by selecting the 
vertex with the highest elevation from each 
polygon. As with the synthetic inventory, the 
statewide database was then truncated to match the 
roads (Figure 2) and population (Figure 3) biases 
observed in the dated PNLI. The undated initiation 
points showed a distribution of attributes 
intermediate between the dated events and the 
synthetic inventory, so the subsequent truncation 
was less extreme.  
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Logistic regression 
Numerous methods for calculating landslide 
susceptibility exist. Logistic regression has been 
applied for this purpose for over a decade (Atkinson 
and Massari, 1998), and its use has become 
common worldwide (Chau and Chan, 2005; 
Gorsevski et al., 2006; Ninu Krishnan et al., 2014; 
Brenning et al., 2015; Steger et al., 2016b). We 
selected this method to evaluate the effects of 
biased inventories on a standard approach to 
landslide susceptibility mapping. Logistic 
regression is a flexible technique that can combine 
continuous and categorical predictors (independent 
variables) into a statistical estimate of the 
probability of a response (dependent variable). In 
landslide susceptibility studies, the response is the 
presence of a landslide at a given location, and the 
model output is the spatial probability of 
occurrence. A critical assumption of the method is 
that the landslide inventory used for model fitting 
represents the accurate distribution of landslides. 
This assumption may be incorrect for a variety of 
reasons, including systematic error in the inventory.  
 Previous landslide susceptibility researchers 
have used a wide variety of predictors to predict the 
occurrence of landslides. However, some variables 
may be more strongly associated with inventory 
bias than true landslide occurrence, thus degrading 
the performance of a susceptibility map (Steger et 
al., 2016b). In order to avoid this problem, we 
omitted variables such as land use and road 
presence. The presence of burned areas was 
considered, but was not found to be statistically 
significant. In addition, the size and frequency of 
wildfires appears to be associated with mean annual 
precipitation, which was included in the model. 
Slope and geology were used to generate the 
DOGAMI map (Burns et al., 2016), and these 
factors have been used to make many landslide 
susceptibility maps. Because both tectonic and 
climatic influences have a role in landslide 
occurrence, distance to fault and mean annual 
precipitation were analyzed. Slope was generated 
from the National Elevation Dataset (U.S. 
Geological Survey, 2016) at a resolution of 30 
meters. All other variables (Table 1) were rasterized 
to match this resolution.  
 
 

Table 1. List of independent variables 
 

Predictor Source 
Slope (U.S. Geological Survey, 

2016) 
Distance to nearest fault (Smith and Roe, 2015) 

General geologic unit (Smith and Roe, 2015) 
Mean annual precipitation (Oregon State University, 

2016) 
 
 
 These variables were combined into a landslide 
susceptibility map for each version of the synthetic 
landslide inventory.  In place of known locations 
without landslides, points were randomly assigned 
to this category, with the restriction that no 
“landslide points” be included. One fifth of each 
combined landslide/random point dataset was 
randomly selected and saved to validate the 
empirical fit of the other subsets. The logistic 
regression models were fitted and evaluated in R, a 
statistical software environment (Pebesma and 
Bivand, 2005; Sing, 2005; Bivand et al., 2015; 
Hijmans, 2015; R Core Team, 2015). Then the 
models were applied across Oregon to produce a 
series of landslide susceptibility maps with 1-
arcsecond resolution.  

Binning 
Landslide susceptibility models with continuous 
outputs, such as the probabilities from logistic 
regression, are usually categorized into zones for 
the convenience of the user. Although the binning 
process is rarely the focus of research, many 
techniques for doing so have been implemented. 
Four or five bins are typically used (Das et al., 
2010). We binned the continuous output of logistic 
regression into four categories: low 
(probability<0.07), moderate (0.07-0.17), high 
(0.17-0.25), and very high (>0.25).  
 

RESULTS 
Each version of the synthetic landslide inventory 
produced a distinct susceptibility map (Figure 4). 
The size of each susceptibility category was 
consistent, due in large part to the use of identical 
methods and predictor datasets (Table 2). Fitting a 
model to the synthetic inventories identified few 
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locations as very high susceptibility, and a high 
proportion as low susceptibility. This may be 
caused by the low ratio of landslide points to 
random points, which was based on the area 
previously delineated as historic landslides (Burns 
et al., 2016). The undated landslide initiation points 
from SLIDO produced similar results (Figure 5). 
Table 2 also lists the proportions of each category 
shown in the Landslide Susceptibility Overview of 
Oregon, but these cannot be compared directly, due 
to the use of a different modeling approach, binning 
method, and data selection.  

 
Table 2. Size of susceptibility categories by training dataset 
 

Inventory Low Moderate High Very 
high 

Synthetic Inventory 
Unbiased 80% 17% 2% 0% 

Population 
Bias 

81% 18% 1% 0% 

Roads Bias 81% 16% 2% 0% 
Both Biases 80% 19% 1% 0% 

Undated Initiation Points (from SLIDO) 
Unbiased 82% 13% 3% 2% 

Population 
Bias 

82% 12% 3% 3% 

Roads Bias 82% 14% 3% 2% 
Both Biases 83% 12% 3% 3% 

PNLI 82% 15% 2% 1% 
Landslide Susceptibility Overview of Oregon 

SLIDO 37% 28% 30% 5% 
 
 Receiver operating characteristic analysis 
(ROC) showed little difference between biases 
(Table 3). The ROC is often used to evaluate 
landslide susceptibility models (Steger et al., 
2016b), due to its insensitivity to class size. It is 
constructed by calculating the true positive rate 
(TPR) and false positive rate (FPR) for each 
possible threshold, then plotting all TPR-FPR pairs. 
The area under this curve (AUC) ranges from 0 to 
1, with higher values indicating better model 
performance. Table 3 shows the AUC calculated for 
the fifth of each catalog that was not used to train 
the model. The PNLI performed better according to 
this metric, but this fact does not necessarily mean 
that the PNLI-based classification of terrain was 
more successful.  

Table 3. AUC by validation dataset 
 

Synthetic Inventory AUC 
Unbiased 0.74 

Population Bias 0.71 

Roads Bias 0.73 
Both Biases 0.69 

Undated Initiation Points AUC 
Unbiased 0.81 

Population Bias 0.86 

Roads Bias 0.82 
Both Biases 0.85 

PNLI 0.77 
 
 Visual comparison of the landslide 
susceptibility maps revealed much more (Figure 4). 
The unbiased synthetic inventory produced a map 
(Figure 4a) with a geographically broad distribution 
of highly and very highly susceptible locations. In 
contrast, the other maps, especially the population-
biased map (Figure 4b), concentrated landslide 
susceptibility in the Coast Range. This is probably 
due to the association between climate and the 
pattern of human settlement in Oregon. The 
unbiased susceptibility map shows fewer artifacts 
associated with geologic units. The other models 
were fitted to inventories with constrained 
geographical distributions, with the result that large 
areas were identified as low susceptibility. All of 
the biased logistic regression models overemphasize 
geology, unlike the Landslide Susceptibility 
Overview Map of Oregon (Figure 4f). Population 
bias also appears to have increased the effect of 
faults in the Willamette Valley, which probably 
does not reflect a truly increased susceptibility to 
landslides. The substantial differences between 
these maps were not reflected in the validation 
statistics (Table 3); this discrepancy has been noted 
in previous studies (Steger et al., 2015; Steger et al., 
2016b). 
  The distribution of susceptibility in maps 
derived from the undated initiation points was 
similar. The unbiased map concentrated 
susceptibility in the (Figure 5a). Population bias 
raised susceptibility (Figure 5b). Roads bias (Figure 
5c). The combined bias (Figure 5d). 
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Figure 4. Landslide susceptibility calculated from various inventories: a. the synthetic inventory with no added biases; b. the 
synthetic inventory with a population bias added; c. the synthetic inventory with a roads bias added; d. the synthetic 
inventory with both roads and population biases; e. the PNLI; f. the Landslide Susceptibility Overview of Oregon; note that 
the categories in f have different definitions and are not directly comparable.  
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Figure 5. Landslide susceptibility calculated from various inventories: a. the undated initiation points with no added biases; b. 
the same inventory with a population bias added; c. the inventory with a roads bias added d. the inventory with both roads 
and population biases. 
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 All maps shared some common attributes. The 
concentration of susceptibility in the west, and the 
low susceptibility of central and southeastern 
Oregon are due not only to reporting biases in the 
inventories, but also to the geography of the critical 
landslide triggering factors, seismicity and 
precipitation. Although roads were excluded from 
this study as a potentially biasing factor, road 
construction in Oregon may have destabilized some 
slopes (Montgomery, 1994). 
 Despite these similarities, the introduction of 
even one reporting bias into a landslide inventory 
can drastically alter the output of empirical models. 
When landslide training data is confined to lowland 
areas but non-landslide training data is ubiquitous, 
regression coefficients are likely to underestimate 
the effects of steep slope and similar variables. To 
avoid this problem, every landslide susceptibility 
map would ideally be derived from a complete and 
unbiased landslide inventory. In practice, this is 
only possible for small study areas. If empirical 
landslide susceptibility models are to be employed 
for large areas, a method for mitigating the effects 
of inventory bias must be applied.  
 

BIAS MITIGATION 
Landslide inventory bias clearly has an effect on 
these statistical models, potentially degrading the 
utility of the resulting susceptibility maps. Multiple 
techniques for mitigating this problem can be used. 
The first method is simply to rely upon prior 
knowledge, either as a physically-based model or as 
a heuristic model derived from expert opinion. 
However, these methods fail to take advantage of 
the important information contained in landslide 
inventories. Furthermore, physical models typically 
require calibration and thus may be influenced by 
any biases in the calibration inventory.  
 A second method is to explicitly include the 
biasing factors in an empirical model in such a way 
that the relationship between landslide occurrence 
and other predictors is estimated correctly. 
Multilevel statistical models have been used for this 
purpose at the local scale (Steger et al., 2016a), but 
it is unclear whether these models are appropriate 
for use over very large areas. A third method would 
be to determine the probability of landslide 
detection prior to empirical modeling. A correction 
could then be made to the training dataset, with the 

result that the trained model would not require any 
bias correction. However, it would be difficult to 
determine the non-detection probability for a 
complex, multisource inventory such as the PNLI.  
 A fourth method is simply to train the empirical 
model with data from areas that are well-
documented, then apply the model regionally or 
globally. Limitations to this method include the 
possibility that some conditions, such as specific 
geologic units, will not exist within the training 
areas, and the possibility that landslide behavior is 
anomalous in training areas (e.g. construction 
projects alter drainage, which alters landslide 
susceptibility). While these concerns cannot be 
ignored, we believe that spatial extrapolation 
offered the best chance for empirical modeling of 
landslide susceptibility with a large and complex 
inventory. In order to fit a model to well-
documented areas, the state of Oregon was divided 
into areas within 1 kilometer of any major highway, 
and more distant areas. The areas proximal to roads 
were then treated as a training dataset, while the 
distal areas were treated as a validation dataset. This 
division placed over 90% of the synthetic landslides 
in the training dataset, along with sections of every 
general geologic unit. Nevertheless, the training 
areas accounted for only 3% of Oregon, which 
should greatly reduce the influence of false 
negatives on the model fitting process. Figure 6 
shows that the population density is much higher 
within the training area, which suggests that the 
population bias may also be addressed by this 
method. Areas near roads are typically flatter 
(Figure 7), but a wide range of values is still 
available to fit the model. Little difference can be 
seen in precipitation distributions, although there 
appear to be fewer roads in dry areas (Figure 8).  
 A logistic regression model was fitted to the 
training dataset, which consisted of all 3,128 
synthetic landslides within the training area and 
59,534 random points. The model was then applied 
to the entire state of Oregon. ROC analysis was 
performed on a validation dataset consisting of all 
215 landslides located outside of the training area 
and 4,082 random points. The AUC was 0.69, 
which represents the likely outcome when 
evaluating with an incomplete inventory such as the 
dated portion of the PNLI. Evaluating with a more 
complete inventory, such as the unbiased synthetic  

802



 

3rd North American Symposium on Landslides, Roanoke, VA, June 4-8, 2017  

 
 
Figure 6. Estimated population within 1 km (yellow) and 
beyond 1 km (green) from major highways.  
 
 
 

 
 
Figure 7. Slope distribution within 1 km (yellow) and beyond 
1 km (green) from major highways.  
 
 
 

 
 
Figure 8. Distribution of mean annual precipitation near 
(yellow) and far (green) from major highways.  
 

dataset, produced an AUC of 0.73. (329,640 
landslides and 4,529,928 random points were 
located away from roads.) 
 This method produced a landslide susceptibility 
map with a plausible geographic distribution 
(Figure 9a). Very highly susceptible locations are 
most common in the western third of the state, 
where topography, seismicity and precipitation are 
more intense. Nevertheless, much of eastern Oregon 
is also susceptible, due to rugged terrain. The 
geologic unit “batholith rocks” was associated with 
low susceptibility, forming distinctive patches near 
Baker City. This unit was not spatially extensive 
enough to intersect many near-highway landslides, 
so the true landslide susceptibility may be higher. 
Other geologic units do not appear to exert such a 
strong influence. Unlike the results shown in Figure 
4b-e, the population bias in this training dataset has 
not resulted in a concentration of nearly all highly 
susceptible pixels in the coast range. Instead, the 
bias-mitigated susceptibility resembles the “true” 
distribution of susceptibility (Figure 4f) from which 
the synthetic inventory was derived, with the 
highest susceptibility in the Coast Range and other 
concentrations in the Cascades and northeastern 
Oregon.  
 We repeated this process with 2,246 undated 
landslide initiation points, of which 1,824 were 
located near a highway, and 42,674 random points. 
The AUC was 0.82 when validated with the biased 
version of the inventory, and 0.81 with the full 
inventory. Susceptibility was distributed in a pattern 
similar to that derived from the synthetic inventory, 
but was higher overall (Figure 9b). 
 

CONCLUSIONS 
Experiments with synthetic and historic landslide 
inventories revealed that reporting biases can affect 
the accuracy of empirically derived susceptibility 
models. Population had a greater biasing effect than 
distance to road. We controlled other potential 
biases, such as linguistic or economic factors, by 
focusing on a single country. Future research would 
be required to address all the sources of bias in the 
GLC and similar landslide inventories. A simple 
strategy for working with biased inventories was 
tested. Spatial extrapolation performed well and is 
recommended as a first approach to modeling  
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Figure 9. a) Landslide susceptibility maps calculated from the synthetic inventory with both road and population biases, where the 
training data consisted of points within 1 kilometer of a major highway. b) The same treatment was applied to an inventory of undated 
landslide initiation points.

804



 

3rd North American Symposium on Landslides, Roanoke, VA, June 4-8, 2017 

landslide susceptibility with heavily biased 
inventories. Ultimately, the creation of new, 
comprehensive inventories may simplify the task of 
landslide susceptibility mapping over large areas.  
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