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Abstract 

 

     Demonstrating speedup for parallel code on a multicore shared 

memory PC can be challenging in MATLAB due to underlying parallel 

operations that are often opaque to the user.  This can limit potential for 

improvement of serial code even for the so-called embarrassingly parallel 

applications.  One such application is the computation of the Jacobian 

matrix inherent to most nonlinear equation solvers.  Computation of this 

matrix represents the primary bottleneck in nonlinear solver speed such 

that commercial finite element (FE) and multi-body-dynamic (MBD) 

codes attempt to minimize computations.  A timing study using MATLAB’s 

Parallel Computing Toolbox was performed for numerical computation of 

the Jacobian.  Several approaches for implementing parallel code were 

investigated while only the single program multiple data (spmd) method 

using composite objects provided positive results.  Parallel code speedup 

is demonstrated but the goal of linear speedup through the addition of 

processors was not achieved due to PC architecture. 

 

Introduction 

 

     Most PCs available on the market today come equipped with multicore processors where cores share a 
common memory [1,2].  Programming on these systems is typically done via threading which is a special 
case of an operating systems process where threads share memory [2].  Multithreading or Intel’s 
proprietary version called hyperthreading is also commonplace and allows for resource duplication within 
a given central processing unit (CPU) core [2].  Such computer architecture is what enables programming 
languages to exploit thread-parallel operations.  Use of this technology where parallel operations are 
carried out autonomously without any user input or code modifications is often referred to as implicit [1] 
or multithreaded parallelism [3] where such operations are an integral part of the software.  MATLAB 
software uses multithreaded parallelism by default for many of its trigonometric and linear algebraic 
operations [1,3].  A partial list of these functions including linear equation solvers, matrix factorization 
methods, etc. can be found on the MathWorks user support website [4].  This means serial versions of 
MATLAB code are typically running lower level parallel operations that users may be unaware of and 
have little or no control over.  These operations can be validated in a qualitative sense through monitoring 
of the CPU usage history plots using Windows Task Manager or a similar program.  A MATLAB serial 
program run using an Intel Core i7 chip for example showed use of only a single CPU for processing of a 
small amount of data, while processing of a significantly larger amount of data showed use of all 
available processors.  Although the Windows Task Manager showed a total of eight available processors 
for this chip, it should be noted that this is a quad-core processor with eight available threads meaning 
four of the processors are non-physical.  MATLAB still allows users to specify the number of threads 
being used through the maxNumCompThreads command [5].  Warning has however been issued by 
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MathWorks that this feature will be removed in a future release implying multithreading is the intended 
normal software environment. 

     Even though MATLAB exploits use of multicore processors for serial programming, code can 
potentially be further improved for speed through use of the Parallel Computing Toolbox.  This toolbox 
enables use of explicit parallelism where specific tasks can be directed to specific processors.  Reference 
to underlying parallelism for serial code could not be found in the Parallel Computing Toolbox 
documentation [5] while only a single reference to “built-in parallelism provided by the multithreaded 
nature of many of the underlying MATLAB libraries” was found in a later version.  This may leave users 
unaware of underlying parallelism in serial code leading to high expectations for speedup of parallel 
versions.  According to a professor who specializes in computer science, a common scenario of first-time 
developers of parallel code is to find out it is actually slower than the serial version which he attributes to 
lack of understanding of how computer hardware works, at least at a high level [2].  Establishing serial 
MATLAB or any computer code with underlying parallelism as the de facto standard in which to gage 
parallel code performance can significantly add to the challenge of achieving speedup.  This can be true 
even for the so-called embarrassingly parallel applications as underlying parallelism may leave little room 
for code improvement.  Users should also be aware that unlike distributed memory systems, the addition 
of processors for parallel computing on shared memory systems does not necessarily provide linear type 
improvement for speedup where doubling the number of processors doubles computational speed and so 
on. 

     MATLAB users who maintain or develop their own versions of nonlinear FE or MBD software codes 
may wish to speedup computations using the Parallel Computing Toolbox.  For Newton-Raphson based 
solvers, the major cost per iteration lies in computation of the Jacobian matrix [6] where it is often 
referred to as the tangent stiffness matrix in FE literature.  Increasing speed in which this computation is 
performed can have a dramatic effect on the overall solution time, especially for dynamic simulations 
where the matrix is not only computed during solver iterations, but at time steps during the simulation as 
well.  One of the solver options in MBD software MSC ADAMS for example contains heuristics to help 
minimize the number of times computation of the Jacobian is performed as this represents the most time 
consuming part of a simulation [7].  Candidate algorithms for parallel computation of the Jacobian should 
be gaged for performance relative to a similar serial version.  One of the simplest and most widely used 
metrics to gage parallel performance is observed speedup being defined as serial execution divided by 
parallel execution time in terms of total elapsed or wall-clock time [8].  This can be accomplished in 
MATLAB using the tic and toc functions.  MATLAB also offers a function for measuring CPU time but 
does not recommend using it on systems capable of hyperthreading as the tic and toc functions are more 
reliable [5]. 

 

Methods for Computing the Jacobian 

 

     The Jacobian is a matrix of first-order partial derivatives resulting from the linearization or Taylor 
series expansion of a set of nonlinear equations about a known point or solution.  This provides for a local 
linear model about the known point that can be used to predict nearby points in the nonlinear model.  
Computation of this matrix is fundamental to most nonlinear solver algorithms and is performed on an 
iterative basis until a converged solution to the nonlinear model is found.  In commercial FE codes such 
as Nastran [9] and Abaqus [10], the Jacobian or tangent stiffness matrix is part of a Newton-Raphson type 
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solver.  Due to computational expense, effective solution strategies often minimize computation or hold 
the Jacobian constant during iterations for a modified Newton-Raphson approach [6].  Commercial MBD 
software MSC ADAMS [7] also uses a Newton-Raphson type solver for dynamics and only updates the 
Jacobian if convergence is not achieved within a finite number of iterations.  Development of efficient 
algorithms for computation of the Jacobian or derivatives in general is paramount to nonlinear equation 
solvers as this tends to dominate the total computational time for obtaining solutions. 

     Several methods for computing derivatives needed to construct the Jacobian are available.  Review of 
popular FE [9,10] and MBD [7] software documentation indicates that obtaining derivatives numerically 
by finite difference is still the standard approach being used.  A goal set by developers of MSC ADAMS 
is to eventually eliminate the need for numerical differentiation [11] due to high computational cost.  By 
finite difference, derivatives of an individual function 𝑓 with respect to an independent variable 𝑥 are 
obtained by applying a small change or perturbation to 𝑥.  Variable ℎ can be used as a perturbation 
parameter and is added to 𝑥 to represent this change.  The resulting expression for the derivative of 𝑓(𝑥) 
or 𝑓ˊ(𝑥) by finite difference is 

𝑓ˊ(𝑥) ≈ 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 (1) 

which represents an approximation to the derivative by the calculus definition as it does not include the 
limit expression for ℎ tending to zero.  It is apparent that ℎ cannot become too small due to limits of 
numerical precision on computers and possibility of dividing by a value close to zero.  Take for example a 
sample function 𝑓(𝑥) =  𝑥3 + 2𝑥 + 1 with an exact or analytical derivative of 𝑓ˊ(𝑥) = 3𝑥2 + 2.  Using 
equation (1) for estimation of the derivative about 𝑥 = 1 and varying ℎ by a factor of 10 between 100and 
10−20 results in figure 1 for the percent error of equation (1) with respect to the analytical derivative.  
Results were obtained using MATLAB with double precision representation of floating point numerical 
values.  Error for this case was minimized for ℎ = 10−8 and the procedure broke down or failed for ℎ ≤

10−16 where 𝑓(𝑥) and 𝑓(𝑥 + ℎ) became numerically equivalent after the 15th decimal place or a 
maximum of 16 significant digits.  The numerator in equation (1) became zero for these instances 
resulting in 100% error.  Additional information on this method including error can be found in [12].   

 

Figure 1.   Percent error vs. parameter ℎ for a given function 𝑓 
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     An alternative to obtaining derivatives numerically by finite difference is symbolic differentiation.  In 
this case, the symbolic expression for 𝑓(𝑥) would be differentiated using rules of calculus to obtain a new 
symbolic expression for 𝑓ˊ(𝑥).  Numerical values of 𝑥 can then be substituted into 𝑓ˊ(𝑥) for specific 
values of the derivative with an accuracy of 16 significant digits when using double precision.  The result 
for 𝑓ˊ(1) in this case would be 5 followed by a decimal with fifteen zeros.  The value obtained by finite 
difference on the other hand is 4.999999969612644 which exhibits error in the eighth decimal place for 
ℎ = 10−8.  Although symbolic differentiation can be used to obtain derivatives in an exact sense, 
computational overhead for manipulating symbolic expressions using calculus based rules would limit 
this procedure to small problems to avoid excess solve time.  A comprehensive list of computer programs 
capable of manipulating symbolic math expressions including their capabilities can be found at 
https://en.wikipedia.org/wiki/List_of_computer_algebra_systems. 

     A third alternative to obtaining derivatives is automatic differentiation.  The algorithm for computing 
derivatives in this case uses existing computer programs or subroutines for computation of a function 𝑓 
and supplements them with a new routine for computation of 𝑓ˊ.  Derivatives are not subject to 
approximation error and are produced in an exact sense similar to the symbolic method.  Automatic 
differentiation seems to be gaining favor based on the amount of research and computer codes being 
generated.  Developing efficient, robust algorithms for large-scale applications has been identified as a 
research challenge by a developer using MATLAB [13] and favorable timing results in comparison to 
finite difference have been obtained for a specific class of problem by developers using C++ [14].   MSC 
did a study for integrating ADIFOR [15] into the FORTRAN version of ADAMS but it was not stated to 
having been adopted [7] implying computational overhead exceeded that of finite difference for this 
general purpose commercial software.  A community portal with information on software, conferences, 
and workshops dedicated to the subject matter can be found at http://www.autodiff.org.   

     Calculation of derivatives for components of the Jacobian matrix were made using the finite difference 
method in both serial and parallel code versions for this study.  This decision was based on ease of 
implementing various parallel versions for evaluating speedup and likelihood it remains the most practical 
approach for computing derivatives in FE and MBD programs.  Equations for a repeating link or chain 
system were chosen for computing the Jacobian due to scalability and a specific reference in the 
LSOLVER section of the MSC ADAMS solver manual [7].  Better performance is claimed when using an 
available sparse matrix solver with parallel capability for systems of 5000 degrees-of-freedom (DOF) and 
larger with exception to some models like simply-connected long chains.  This set a goal for positive 
margin on speedup for linkage systems under 5000 DOF for parallel computation of the Jacobian using 
MATLAB code.  Although numerical accuracy of derivatives in the Jacobian may be of concern, highly 
accurate results for Newton-Raphson type solvers are not required.  The modified Newton-Raphson 
method may hold the Jacobian constant, without any updates during iterations, and the BFGS method [16-
19] which can be used as an option in both Nastran and Abaqus updates the matrix using approximations 
that are even less accurate than finite differences. 
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Equation Theory and Background 

 

     Equations for the linkage system used in this study were derived using Lagrange’s method [20].  This 
resulted in a set of nonlinear differential algebraic equations (DAE’s) used for computation of the 
Jacobian matrix.  Equations can be represented in compact form where 𝒖 is understood to contain a mix 
of space and time dependent variables as 

𝒇(𝒖) = 𝟎 (2) 

and linearized about a known state 𝑖 using a first-order Taylor series expansion for solution by the 
Newton-Raphson method. 

𝒇(𝒖) ≈ 𝒇(𝒖𝑖) + (
𝜕𝒇

𝜕𝒖
)
𝑖
(𝒖 − 𝒖𝑖) = 𝟎  (3) 

     Bolded terms in equation (2) and equation (3) are used to represent vectors where 𝒖 is the vector of 
unknown variables and 𝒇(𝒖) is the system of DAE’s.  Vector 𝒖 is often referred to as the state vector and 
contains variables for position, velocity, and constraint forces for each link in the system.  The derivative 
term in equation (3) is the Jacobian with the following expanded or matrix format for 𝑁 unknown 
variables or DOF.   

(
𝜕𝒇

𝜕𝒖
)
𝑖
=

[
 
 
 
𝜕𝑓1

𝜕𝑢1
⋯

𝜕𝑓1

𝜕𝑢𝑁

⋮ ⋱ ⋮
𝜕𝑓𝑁

𝜕𝑢1
⋯

𝜕𝑓𝑁

𝜕𝑢𝑁]
 
 
 

𝑖

  (4) 

     Equation (4) shows that a system containing 𝑁-DOF will have 𝑁𝑥𝑁 or 𝑁2 derivatives in the Jacobian. 
Calculation of every individual derivative may however not be required as individual equations in 
equation (2) can be organized in a manner such that the Jacobian will have a known pattern.  This is true 
for mechanical systems in general and sparsity or zero-entities in the Jacobian resulting from linearization 
of governing DAE’s can be taken advantage of as well.  Details on the derivation of equations using this 
approach for a single link or pendulum including pattern of the Jacobian can be found in [21].  The single 
link has eight unknown variables for this case as motion is constrained to a plane.  A similar planar 
constraint was used for the multi-link system in this study where total DOF is obtained by multiplying the 
number of links by eight.  Variables or DOF for each link consist of two for position, one for orientation, 
their corresponding derivatives, and two for the constraint forces.   

     Governing equations for the multi-link systems were produced using a MATLAB function or 
subroutine based on a repeating pattern for systems of two links and greater.  Serial and parallel 
subroutines with options for sparse versus dense formulations were then developed for timing of 
numerical computation of the Jacobian for a varying number of links.  Validation of computer code was 
performed for a two link system under the influence of gravity using a previously developed nonlinear 
software suite capable of simulating dynamic systems [22].  Results for the horizontal constraint force 
versus time for the grounded connection with links initially configured as an upside down “V” are shown 
in figure 2.  Blue dots on the figure were found using MATLAB and the red line was found using MSC 
ADAMS.   
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Figure 2.   Constraint force vs. time for a double link system 

 

     The 16x16 Jacobian was small enough in this case where hand or symbolic computation of derivatives 
could be performed with reasonable effort.  A function with expressions for derivative terms was then 
developed for computation of the Jacobian in an exact sense for comparison to a serial numerical version 
in terms of solution time for the two second simulation shown in figure 2.  The total solution or wall time 
for the MATLAB simulation was 0.45 seconds using the explicit definition of the Jacobian versus a 5 
second solution time for computation of derivatives numerically by finite difference.  The time step used 
for the simulation was 0.001 seconds and convergence was achieved within 3 to 4 iterations per time step 
using a Newton-Raphson type solver where the Jacobian was updated at every iteration.  The over tenfold 
increase in solution time between the two simulations demonstrates the high cost associated with 
numerical computation of the Jacobian.  Switching to a modified Newton-Raphson method where the 
Jacobian was calculated numerically only once per time step and held constant increased iterations for 
convergence up to 9 in some instances, but reduced the solution time to 1.67 seconds.  This further 
reinforces that computation of the Jacobian should be minimized to avoid excessive solution times in 
general.  Note that the explicit definition of the Jacobian provided for an idealized case for timing results.  
Such an approach would however not be practical for large systems and require use of a numerical 
procedure. 
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Serial Code Implementation 

 

     A simplified version of MATLAB code used to numerically compute the Jacobian matrix in a serial 
fashion is shown in figure 3.  Function ser_jacobi is defined to output Jacobian matrix 𝑱 using state 𝒖𝑖 as 
input.  Code is “vectorized” in the sense that the matrix is computed a column at a time with a single for-
loop verses elementwise using a double for-loop.  Column entities in equation (4) show individual 
equations in 𝒇 being differentiated with respect to a given element of vector 𝒖 such that perturbations 
applied to specific elements of 𝒖 can be used to compute entire columns of 𝑱.  Vectorization is a key 
concept in MATAB programming as it simplifies code, allows users to take advantage of underlying 
subroutines inherent to the programming language, and will likely perform computations in the most 
efficient manner.  The column-wise implementation of equation (1) is shown on row twelve of figure 3.  
The (: , 𝑗) operator is used to designate all row entities of the 𝑗𝑡ℎ column in 𝑱 being a difference in 
perturbed vector 𝒇(𝒖𝑝) and original vector 𝒇(𝒖𝑖) with all entities being divided by ℎ.  Additional 
information on code vectorization can be found in the Vectorization section of the MATLAB user 
documentation [5].    

 

 

Figure 3.   Serial Jacobian computation using MATLAB 

 

     Code in figure 3 is specific to computation of the full Jacobian matrix or all matrix entities and storing 
them in a dense format which includes any zero entities.  Such computation can be expensive for large 
systems and a significant reduction in computational cost can be achieved by taking advantage of known 
patterns and sparsity.  Through proper arrangement of state variables in 𝒖, the Jacobian for the multi-link 
systems has the following block matrix format which is consistent with the general format given in [21].  
Zeros sub-matrices are due to Lagrange’s method being used to derive governing equations which results 
in large sets of equations in redundant coordinates and considerable sparsity for the Jacobian.   
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𝑱 = 

[
 
 
 
 
 
 
 

1

𝑑𝑡
𝑴 𝟎 𝟎 𝟎 𝚽𝑝

𝑇

𝟎
1

𝑑𝑡
𝑰𝑪𝑴 𝟎 [𝚽𝜀

𝑇𝚲]𝜀 𝚽𝜀
𝑇

−𝑰 𝟎
1

𝑑𝑡
𝑰 𝟎 𝟎

𝟎 −𝑰 𝟎
1

𝑑𝑡
𝑰 𝟎

𝟎 𝟎 𝚽𝑝 𝚽𝜀 𝟎 ]
 
 
 
 
 
 
 

 (5) 

 

     Components of 𝑱 include diagonal sub-matrices 𝑴, 𝑰𝑪𝑴, and 𝑰 being mass, inertia, and identity 
matrices respectively.  Term 𝑑𝑡 applied to these matrices is the time step or increment used between states 
for dynamic simulation.  Constraint equations are stored in vector 𝚽 where 𝚽 = 𝟎 and subscripts 𝑝 and 𝜀 
are used to denote partial derivatives with respect to position and orientation variables respectively.  
Finally, the constraint forces or Lagrange multipliers are stored in column vector 𝚲.  Sub-matrices for 
mass, inertia and identity do not change for constant 𝑑𝑡 or within a given time step and are invariant.  
Standalone identity matrices are invariant by definition.  This leaves only sub-matrices containing 𝚽 for 
numerical computation which dramatically reduces the amount of computational overhead and size of the 
for-loop in figure 3.  A more efficient strategy for computation of the Jacobian would now involve pre-
allocation and construction of a sparse matrix with invariant terms followed by computation of the 𝚽 sub-
matrix blocks in the last row, and the row two, column four block locations of equation (5).  Previously 
calculated 𝚽 blocks in the last row can then be transposed and inserted into the last column of equation 
(5). 

     The need for sparse versus dense format of the Jacobian is driven by both computer memory for 
storage and computational cost of factorization.  The Jacobian must be factorized each time a new version 
is computed as it is part of a linear system being solved during iterations of Newton-Raphson based 
solvers.  Eliminating the storage of zeros and the processing of zero entities in sparse computational 
algorithms can have dramatic effects on efficiency and become more apparent as systems increase in size.  
Table 1 for example shows the wall time needed to solve a sample linear system Δ𝒖 = 𝑱−1𝑹 where 𝑱 is 
stored in both sparse and dense formats for timing comparison.   Variable Δ𝒖 denotes an incremental 
change in state vector 𝒖, 𝑹 is a residual vector set to all ones, and Jacobian 𝑱 has been factorized into 
lower and upper triangular elements versus taking the inverse for solution.  The speed factor in table 1 is a 
multiplier of how many times faster the sparse solver is compared to the dense, and the non-zero (NZ) 
ratio is the number of non-zero terms divided by the total or 𝑁2 number of terms in 𝑱.  It is apparent from 
numerical values in the table that sparsity is significant and large performance gains in solution time can 
be expected by using the sparse matrix format and solver.  A detailed overview of sparse matrices and 
sparse matrix operations in MATLAB can be found in [23]. 
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Table 1   Solution times using sparse and dense Jacobian (sec) 
Links DOF sparse dense factor NZ ratio 

200 1600 0.003 0.08 27.64 2.0E-03 
400 3200 0.006 0.56 90.21 1.0E-03 
600 4800 0.009 1.40 148.57 6.8E-04 
800 6400 0.012 3.15 252.23 5.1E-04 
1000 8000 0.016 5.87 372.81 4.1E-04 
1200 9600 0.019 9.84 516.66 3.4E-04 
1400 11200 0.023 15.06 664.97 2.9E-04 
1600 12800 0.027 23.10 853.97 2.5E-04 
1800 14400 0.031 32.24 1052.13 2.3E-04 
2000 16000 0.034 43.29 1262.09 2.0E-04 

 

Parallel Code Implementation 

 

     Parallel processing of computational algorithms in MATLAB can be implemented using either parallel 
for-loops, parfor, or by spmd.  Parallel for-loops work only for the simplest of algorithms and each loop 
must be totally independent from all others.  The perturbed vector 𝒖𝑝 inside the for-loop shown in figure 
3 is updated elementwise over the course of loop iterations such that a parallel for-loop cannot be used for 
computing the Jacobian in this manner.  The single program multiple data or spmd option however is 
more versatile and allows for specific tasks to be assigned to specific processors.  Once a parallel job is 
started in MATAB, one processor is assigned the role of client while the remaining processors are 
assigned the role of workers.  Computation of the Jacobian can be accomplished by dividing the for-loop 
in figure 3 over a specified number of processors using spmd.  This requires creation of an indexing array 
used to identify the start and finish column identification numbers based on desired matrix partitions.  
Changes to the serial code are however minimal making this method easy to implement. 

     The Jacobian can be stored using either distributed arrays, codistributed arrays or composite objects 
when using the spmd option.  Arrays are considered as distributed or codistributed as viewed from the 
perspective of the client or worker processors.  Distributed arrays are created on the client where 
codistributed arrays are created on the workers themselves.  Positive timing results for writing and 
updating elements of these type arrays could not be obtained.  This may be due to the client-worker 
relation where writing new elements to workers causes a similar update to be performed on the client.  
Explicit reference to how writing of elements to these arrays is performed could however not be found in 
documentation and users do not have access to the underlying C-code used to write MATLAB software.  
Composite objects on the other hand produced positive results for computing the Jacobian in parallel.  
These objects exist on workers, have the same variable name on all workers, but store different data.  The 
downside of composite objects is that they must be converted back into a single matrix for use in 
computations in their entirety.  Parallel computation of the Jacobian using composites for example will be 
stored in independent groups of columns on workers.  If the Jacobian is then needed for use in a linear 
system 𝑱Δ𝒖 = 𝑹, it will need to be converted into matrix form. 

     A parallel version of the for-loop used to calculate the Jacobian in figure 3 is shown in figure 4.  Code 
is again specific to computation of the full Jacobian matrix in dense form.  This provides for the most 
compact, readable version of code to demonstrate spmd parallelization.  Computation of the index array, 
index, for parsing of the Jacobian is not shown on the figure.  Variable 𝑤 is used to designate specific 
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worker or processor identifications.  The labindex function is used to distribute tasks being calculation of 
specific columns of the Jacobian to specific workers.  Column identification numbers all start with one for 
composite objects on workers and an additional variable 𝑘 is used to distinguish between column 
identification numbers for the entire Jacobian and sections being stored in composite objects.  
Computation of the 𝚽 blocks only would require additional indexing for start and finish row 
identification numbers versus processing of all rows as shown in figure 4.  Final assembly of the Jacobian 
using dense or sparse format would then be carried out after the spmd block of code is complete. 

 

Figure 4.   Parallel Jacobian computation using MATLAB 

 

Code Timing Results 

 

     The timing of computer code was accomplished using the 2015b version of MATLAB software and is 
reported using wall time.  The tic and toc functions in MATAB behave similar to a stopwatch where toc 
provides for the total elapsed or wall time since the last initiation of tic.  The cputime function offers an 
alternative and was not used due to potential for error.  Additional explanation of the two timing methods 
can be found in the Measure Performance of Your Program section of the MATLAB user documentation 
[5].  Here, the tic and toc functions are stated to be more reliable than cputime and significant difference 
in reported times can occur due to hyperthreading where instructions are processed in parallel on a single 
processor.  Wall time may be considered a more conservative approach for characterizing performance of 
computer code as it includes all communications overhead associated with parallel operations. 

     Wall timing results for processing of the Jacobian are shown in tables 2 through 4.  Each table includes 
a timing comparison of serial to parallel code for a given number of links using a varying number of 
processors (NP).  The size of the Jacobian matrix or number of rows and columns is equal to the DOF 
number.  Wall time is reported in seconds where an associated speedup factor defined as the serial divided 
by parallel time is used to indicate performance.  Results were obtained using a Windows 7 laptop 
computer with an Intel i7-3720QM processor and available 16 GB RAM.  A maximum of 8 threads or 
processors were available to MATLAB as workers and timing is initially reported using maximum 
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resources.  This decision was based on identifying the smallest DOF system with positive performance or 
a speedup factor greater than one with maximum parallel communications overhead.   The number of 
links was then varied in an increasing manor until the speedup factor no longer demonstrated significant 
gains in performance.  At this point, use of computational resources is considered maximized with no 
additional bandwidth available for further performance gains.  Lines across the center of tables are used to 
denote this breakpoint.  The number of processors was then decreased while holding the DOF constant 
showing an expected decrease in the speedup factor due to the reduction of computational resources.   

     Table 2 considers computation of all entities or the full Jacobian matrix using composite objects only 
and saves them using dense format which includes zero terms.  Positive performance with a speedup 
factor of 1.2 occurs for a 200 link, 1600 DOF system.  As the number of DOF continues to increase, 
performance is seen to level off at 8000 DOF with a maximum speedup factor of 3.8. Note that linear 
speedup could not be obtained as the addition of processors does not come with additional memory.  
Decreasing the number of processors while holding DOF constant at 8000, then provides for a minimum 
speedup factor of 1.7 when using only two processors.  Computations used for the Jacobian in table 3 
were similar to those in table 2 with the exception of inclusion of time to convert the composite object to 
a double precision matrix.  The conversion is simple but cost is significant as seen by the overall 
reduction in speedup factor when compared with corresponding values in table 2.  Positive margin for 
speedup now requires a 3200 DOF versus 1600 DOF system and performance levels out at 6400 DOF 
versus 8000 DOF when using 8 processors.   

     Table 4 provides results for a pre-allocated sparse Jacobian with invariant sub-matrices and 
computation of the constraints or blocks containing 𝚽 only.  Composite objects are used for the constraint 
blocks and time to convert to sparse double precision format is included as well.  Gains for parallel 
performance are seen for systems up to 6400 DOF.  Wall time is the lowest as compared to other methods 
and use of sparse format will provide a significant speed advantage during a linear solution phase as 
shown in table 1.  This procedure for computing the Jacobian would be considered the most practical and 
recommended as it takes advantage of known patterns, sparsity, and conversion to double precision 
matrix format for use in solving a linear system. 

 
Table 2   Calculation of full Jacobian, dense composite format (sec) 
Links DOF NP serial parallel factor 

200 1600 8 0.6 0.5 1.2 
400 3200 8 3.3 1.6 2.1 
600 4800 8 9.7 3.1 3.1 
800 6400 8 18.6 5.3 3.5 
1000 8000 8 30.5 8.1 3.8 
1200 9600 8 45.3 12.0 3.8 
1000 8000 8 30.5 8.1 3.8 
1000 8000 6 30.0 9.1 3.3 
1000 8000 4 30.2 11.5 2.6 
1000 8000 2 30.2 18.0 1.7 
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Table 3   Calculation of full Jacobian, dense matrix format (sec) 
Links DOF NP serial parallel factor 

200 1600 8 0.6 0.8 0.7 
400 3200 8 3.2 2.5 1.3 
600 4800 8 9.9 5.3 1.9 
800 6400 8 19.0 9.2 2.1 
1000 8000 8 32.3 15.5 2.1 
1000 8000 8 32.3 15.5 2.1 
1000 8000 6 32.3 16.3 2.0 
1000 8000 4 32.2 17.7 1.8 
1000 8000 2 32.4 24.8 1.3 

 
Table 4   Calculation of block Jacobian, sparse matrix format (sec) 
Links DOF NP serial parallel factor 

200 1600 8 0.2 0.4 0.6 
400 3200 8 1.3 0.8 1.6 
600 4800 8 3.9 1.6 2.4 
800 6400 8 7.8 2.7 2.9 
1000 8000 8 11.8 4.0 2.9 
1000 8000 8 11.8 4.0 2.9 
1000 8000 6 11.3 4.9 2.3 
1000 8000 4 11.3 5.9 1.9 
1000 8000 2 11.4 8.4 1.4 

 

Summary 

 

     Successful development of explicitly defined parallel code for computing the Jacobian matrix was 
completed using MATLAB.  The spmd method using composite objects was found to be the only 
procedure that produced positive results while use of the sparse as compared to dense format provided for 
dramatic speed improvements for solutions to linear systems.  Speedup of parallel code was demonstrated 
on a shared memory PC and compared to serial code with underlying parallel operations using wall time.  
This provided for a most conservative estimate for parallel code speedup as underlying parallel operations 
are integral to MATLAB and wall time includes parallel communications overhead.  Linear type parallel 
speedup could not be achieved using the chosen performance metrics and computer architecture which are 
quite common and may represent a typical MATLAB environment.  Performance gains were however 
demonstrated and an approximate three times speedup for the recommended sparse format, double 
precision Jacobian matrix was achieved.  The goal of demonstrating speedup for systems under 5000 
DOF was also achieved being most applicable to smaller scale FE or MBD problems that can run 
efficiently on PCs.  MATLAB users running nonlinear FE and MBD codes on PCs should expect 
significant performance gains when using sparse matrix operations and marginal parallel performance 
gains for systems on the order of 3200 DOF and greater. 
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