

July 2017

NASA/TM–2017-219655

Parallel Computation of the Jacobian Matrix for
Nonlinear Equation Solvers Using MATLAB

Geoffrey K. Rose

Langley Research Center, Hampton, Virginia

Duc T. Nguyen and Brett A. Newman

Old Dominion University, Norfolk, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compila-
tions of significant scientific and technical data
and information deemed to be of continuing
reference value. NASA counter-part of peer-
reviewed formal professional papers but has less
stringent limitations on manuscript length and
extent of graphic presentations.

 TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at
757-864-9658

 Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

July 2017

NASA/TM–2017-219655

Parallel Computation of the Jacobian Matrix for
Nonlinear Equation Solvers Using MATLAB

Geoffrey K. Rose

Langley Research Center, Hampton, Virginia

Duc T. Nguyen and Brett A. Newman

Old Dominion University, Norfolk, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

Abstract

 Demonstrating speedup for parallel code on a multicore shared

memory PC can be challenging in MATLAB due to underlying parallel

operations that are often opaque to the user. This can limit potential for

improvement of serial code even for the so-called embarrassingly parallel

applications. One such application is the computation of the Jacobian

matrix inherent to most nonlinear equation solvers. Computation of this

matrix represents the primary bottleneck in nonlinear solver speed such

that commercial finite element (FE) and multi-body-dynamic (MBD)

codes attempt to minimize computations. A timing study using MATLAB’s

Parallel Computing Toolbox was performed for numerical computation of

the Jacobian. Several approaches for implementing parallel code were

investigated while only the single program multiple data (spmd) method

using composite objects provided positive results. Parallel code speedup

is demonstrated but the goal of linear speedup through the addition of

processors was not achieved due to PC architecture.

Introduction

 Most PCs available on the market today come equipped with multicore processors where cores share a
common memory [1,2]. Programming on these systems is typically done via threading which is a special
case of an operating systems process where threads share memory [2]. Multithreading or Intel’s
proprietary version called hyperthreading is also commonplace and allows for resource duplication within
a given central processing unit (CPU) core [2]. Such computer architecture is what enables programming
languages to exploit thread-parallel operations. Use of this technology where parallel operations are
carried out autonomously without any user input or code modifications is often referred to as implicit [1]
or multithreaded parallelism [3] where such operations are an integral part of the software. MATLAB
software uses multithreaded parallelism by default for many of its trigonometric and linear algebraic
operations [1,3]. A partial list of these functions including linear equation solvers, matrix factorization
methods, etc. can be found on the MathWorks user support website [4]. This means serial versions of
MATLAB code are typically running lower level parallel operations that users may be unaware of and
have little or no control over. These operations can be validated in a qualitative sense through monitoring
of the CPU usage history plots using Windows Task Manager or a similar program. A MATLAB serial
program run using an Intel Core i7 chip for example showed use of only a single CPU for processing of a
small amount of data, while processing of a significantly larger amount of data showed use of all
available processors. Although the Windows Task Manager showed a total of eight available processors
for this chip, it should be noted that this is a quad-core processor with eight available threads meaning
four of the processors are non-physical. MATLAB still allows users to specify the number of threads
being used through the maxNumCompThreads command [5]. Warning has however been issued by

 2

MathWorks that this feature will be removed in a future release implying multithreading is the intended
normal software environment.

 Even though MATLAB exploits use of multicore processors for serial programming, code can
potentially be further improved for speed through use of the Parallel Computing Toolbox. This toolbox
enables use of explicit parallelism where specific tasks can be directed to specific processors. Reference
to underlying parallelism for serial code could not be found in the Parallel Computing Toolbox
documentation [5] while only a single reference to “built-in parallelism provided by the multithreaded
nature of many of the underlying MATLAB libraries” was found in a later version. This may leave users
unaware of underlying parallelism in serial code leading to high expectations for speedup of parallel
versions. According to a professor who specializes in computer science, a common scenario of first-time
developers of parallel code is to find out it is actually slower than the serial version which he attributes to
lack of understanding of how computer hardware works, at least at a high level [2]. Establishing serial
MATLAB or any computer code with underlying parallelism as the de facto standard in which to gage
parallel code performance can significantly add to the challenge of achieving speedup. This can be true
even for the so-called embarrassingly parallel applications as underlying parallelism may leave little room
for code improvement. Users should also be aware that unlike distributed memory systems, the addition
of processors for parallel computing on shared memory systems does not necessarily provide linear type
improvement for speedup where doubling the number of processors doubles computational speed and so
on.

 MATLAB users who maintain or develop their own versions of nonlinear FE or MBD software codes
may wish to speedup computations using the Parallel Computing Toolbox. For Newton-Raphson based
solvers, the major cost per iteration lies in computation of the Jacobian matrix [6] where it is often
referred to as the tangent stiffness matrix in FE literature. Increasing speed in which this computation is
performed can have a dramatic effect on the overall solution time, especially for dynamic simulations
where the matrix is not only computed during solver iterations, but at time steps during the simulation as
well. One of the solver options in MBD software MSC ADAMS for example contains heuristics to help
minimize the number of times computation of the Jacobian is performed as this represents the most time
consuming part of a simulation [7]. Candidate algorithms for parallel computation of the Jacobian should
be gaged for performance relative to a similar serial version. One of the simplest and most widely used
metrics to gage parallel performance is observed speedup being defined as serial execution divided by
parallel execution time in terms of total elapsed or wall-clock time [8]. This can be accomplished in
MATLAB using the tic and toc functions. MATLAB also offers a function for measuring CPU time but
does not recommend using it on systems capable of hyperthreading as the tic and toc functions are more
reliable [5].

Methods for Computing the Jacobian

 The Jacobian is a matrix of first-order partial derivatives resulting from the linearization or Taylor
series expansion of a set of nonlinear equations about a known point or solution. This provides for a local
linear model about the known point that can be used to predict nearby points in the nonlinear model.
Computation of this matrix is fundamental to most nonlinear solver algorithms and is performed on an
iterative basis until a converged solution to the nonlinear model is found. In commercial FE codes such
as Nastran [9] and Abaqus [10], the Jacobian or tangent stiffness matrix is part of a Newton-Raphson type

 3

solver. Due to computational expense, effective solution strategies often minimize computation or hold
the Jacobian constant during iterations for a modified Newton-Raphson approach [6]. Commercial MBD
software MSC ADAMS [7] also uses a Newton-Raphson type solver for dynamics and only updates the
Jacobian if convergence is not achieved within a finite number of iterations. Development of efficient
algorithms for computation of the Jacobian or derivatives in general is paramount to nonlinear equation
solvers as this tends to dominate the total computational time for obtaining solutions.

 Several methods for computing derivatives needed to construct the Jacobian are available. Review of
popular FE [9,10] and MBD [7] software documentation indicates that obtaining derivatives numerically
by finite difference is still the standard approach being used. A goal set by developers of MSC ADAMS
is to eventually eliminate the need for numerical differentiation [11] due to high computational cost. By
finite difference, derivatives of an individual function 𝑓 with respect to an independent variable 𝑥 are
obtained by applying a small change or perturbation to 𝑥. Variable ℎ can be used as a perturbation
parameter and is added to 𝑥 to represent this change. The resulting expression for the derivative of 𝑓(𝑥)
or 𝑓ˊ(𝑥) by finite difference is

𝑓ˊ(𝑥) ≈
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 (1)

which represents an approximation to the derivative by the calculus definition as it does not include the
limit expression for ℎ tending to zero. It is apparent that ℎ cannot become too small due to limits of
numerical precision on computers and possibility of dividing by a value close to zero. Take for example a
sample function 𝑓(𝑥) = 𝑥3 + 2𝑥 + 1 with an exact or analytical derivative of 𝑓ˊ(𝑥) = 3𝑥2 + 2. Using
equation (1) for estimation of the derivative about 𝑥 = 1 and varying ℎ by a factor of 10 between 100and
10−20 results in figure 1 for the percent error of equation (1) with respect to the analytical derivative.
Results were obtained using MATLAB with double precision representation of floating point numerical
values. Error for this case was minimized for ℎ = 10−8 and the procedure broke down or failed for ℎ ≤

10−16 where 𝑓(𝑥) and 𝑓(𝑥 + ℎ) became numerically equivalent after the 15th decimal place or a
maximum of 16 significant digits. The numerator in equation (1) became zero for these instances
resulting in 100% error. Additional information on this method including error can be found in [12].

Figure 1. Percent error vs. parameter ℎ for a given function 𝑓

 4

 An alternative to obtaining derivatives numerically by finite difference is symbolic differentiation. In
this case, the symbolic expression for 𝑓(𝑥) would be differentiated using rules of calculus to obtain a new
symbolic expression for 𝑓ˊ(𝑥). Numerical values of 𝑥 can then be substituted into 𝑓ˊ(𝑥) for specific
values of the derivative with an accuracy of 16 significant digits when using double precision. The result
for 𝑓ˊ(1) in this case would be 5 followed by a decimal with fifteen zeros. The value obtained by finite
difference on the other hand is 4.999999969612644 which exhibits error in the eighth decimal place for
ℎ = 10−8. Although symbolic differentiation can be used to obtain derivatives in an exact sense,
computational overhead for manipulating symbolic expressions using calculus based rules would limit
this procedure to small problems to avoid excess solve time. A comprehensive list of computer programs
capable of manipulating symbolic math expressions including their capabilities can be found at
https://en.wikipedia.org/wiki/List_of_computer_algebra_systems.

 A third alternative to obtaining derivatives is automatic differentiation. The algorithm for computing
derivatives in this case uses existing computer programs or subroutines for computation of a function 𝑓
and supplements them with a new routine for computation of 𝑓ˊ. Derivatives are not subject to
approximation error and are produced in an exact sense similar to the symbolic method. Automatic
differentiation seems to be gaining favor based on the amount of research and computer codes being
generated. Developing efficient, robust algorithms for large-scale applications has been identified as a
research challenge by a developer using MATLAB [13] and favorable timing results in comparison to
finite difference have been obtained for a specific class of problem by developers using C++ [14]. MSC
did a study for integrating ADIFOR [15] into the FORTRAN version of ADAMS but it was not stated to
having been adopted [7] implying computational overhead exceeded that of finite difference for this
general purpose commercial software. A community portal with information on software, conferences,
and workshops dedicated to the subject matter can be found at http://www.autodiff.org.

 Calculation of derivatives for components of the Jacobian matrix were made using the finite difference
method in both serial and parallel code versions for this study. This decision was based on ease of
implementing various parallel versions for evaluating speedup and likelihood it remains the most practical
approach for computing derivatives in FE and MBD programs. Equations for a repeating link or chain
system were chosen for computing the Jacobian due to scalability and a specific reference in the
LSOLVER section of the MSC ADAMS solver manual [7]. Better performance is claimed when using an
available sparse matrix solver with parallel capability for systems of 5000 degrees-of-freedom (DOF) and
larger with exception to some models like simply-connected long chains. This set a goal for positive
margin on speedup for linkage systems under 5000 DOF for parallel computation of the Jacobian using
MATLAB code. Although numerical accuracy of derivatives in the Jacobian may be of concern, highly
accurate results for Newton-Raphson type solvers are not required. The modified Newton-Raphson
method may hold the Jacobian constant, without any updates during iterations, and the BFGS method [16-
19] which can be used as an option in both Nastran and Abaqus updates the matrix using approximations
that are even less accurate than finite differences.

 5

Equation Theory and Background

 Equations for the linkage system used in this study were derived using Lagrange’s method [20]. This
resulted in a set of nonlinear differential algebraic equations (DAE’s) used for computation of the
Jacobian matrix. Equations can be represented in compact form where 𝒖 is understood to contain a mix
of space and time dependent variables as

𝒇(𝒖) = 𝟎 (2)

and linearized about a known state 𝑖 using a first-order Taylor series expansion for solution by the
Newton-Raphson method.

𝒇(𝒖) ≈ 𝒇(𝒖𝑖) + (
𝜕𝒇

𝜕𝒖
)
𝑖
(𝒖 − 𝒖𝑖) = 𝟎 (3)

 Bolded terms in equation (2) and equation (3) are used to represent vectors where 𝒖 is the vector of
unknown variables and 𝒇(𝒖) is the system of DAE’s. Vector 𝒖 is often referred to as the state vector and
contains variables for position, velocity, and constraint forces for each link in the system. The derivative
term in equation (3) is the Jacobian with the following expanded or matrix format for 𝑁 unknown
variables or DOF.

(
𝜕𝒇

𝜕𝒖
)
𝑖
=

[

𝜕𝑓1

𝜕𝑢1
⋯

𝜕𝑓1

𝜕𝑢𝑁

⋮ ⋱ ⋮
𝜕𝑓𝑁

𝜕𝑢1
⋯

𝜕𝑓𝑁

𝜕𝑢𝑁]

𝑖

 (4)

 Equation (4) shows that a system containing 𝑁-DOF will have 𝑁𝑥𝑁 or 𝑁2 derivatives in the Jacobian.
Calculation of every individual derivative may however not be required as individual equations in
equation (2) can be organized in a manner such that the Jacobian will have a known pattern. This is true
for mechanical systems in general and sparsity or zero-entities in the Jacobian resulting from linearization
of governing DAE’s can be taken advantage of as well. Details on the derivation of equations using this
approach for a single link or pendulum including pattern of the Jacobian can be found in [21]. The single
link has eight unknown variables for this case as motion is constrained to a plane. A similar planar
constraint was used for the multi-link system in this study where total DOF is obtained by multiplying the
number of links by eight. Variables or DOF for each link consist of two for position, one for orientation,
their corresponding derivatives, and two for the constraint forces.

 Governing equations for the multi-link systems were produced using a MATLAB function or
subroutine based on a repeating pattern for systems of two links and greater. Serial and parallel
subroutines with options for sparse versus dense formulations were then developed for timing of
numerical computation of the Jacobian for a varying number of links. Validation of computer code was
performed for a two link system under the influence of gravity using a previously developed nonlinear
software suite capable of simulating dynamic systems [22]. Results for the horizontal constraint force
versus time for the grounded connection with links initially configured as an upside down “V” are shown
in figure 2. Blue dots on the figure were found using MATLAB and the red line was found using MSC
ADAMS.

 6

Figure 2. Constraint force vs. time for a double link system

 The 16x16 Jacobian was small enough in this case where hand or symbolic computation of derivatives
could be performed with reasonable effort. A function with expressions for derivative terms was then
developed for computation of the Jacobian in an exact sense for comparison to a serial numerical version
in terms of solution time for the two second simulation shown in figure 2. The total solution or wall time
for the MATLAB simulation was 0.45 seconds using the explicit definition of the Jacobian versus a 5
second solution time for computation of derivatives numerically by finite difference. The time step used
for the simulation was 0.001 seconds and convergence was achieved within 3 to 4 iterations per time step
using a Newton-Raphson type solver where the Jacobian was updated at every iteration. The over tenfold
increase in solution time between the two simulations demonstrates the high cost associated with
numerical computation of the Jacobian. Switching to a modified Newton-Raphson method where the
Jacobian was calculated numerically only once per time step and held constant increased iterations for
convergence up to 9 in some instances, but reduced the solution time to 1.67 seconds. This further
reinforces that computation of the Jacobian should be minimized to avoid excessive solution times in
general. Note that the explicit definition of the Jacobian provided for an idealized case for timing results.
Such an approach would however not be practical for large systems and require use of a numerical
procedure.

 7

Serial Code Implementation

 A simplified version of MATLAB code used to numerically compute the Jacobian matrix in a serial
fashion is shown in figure 3. Function ser_jacobi is defined to output Jacobian matrix 𝑱 using state 𝒖𝑖 as
input. Code is “vectorized” in the sense that the matrix is computed a column at a time with a single for-
loop verses elementwise using a double for-loop. Column entities in equation (4) show individual
equations in 𝒇 being differentiated with respect to a given element of vector 𝒖 such that perturbations
applied to specific elements of 𝒖 can be used to compute entire columns of 𝑱. Vectorization is a key
concept in MATAB programming as it simplifies code, allows users to take advantage of underlying
subroutines inherent to the programming language, and will likely perform computations in the most
efficient manner. The column-wise implementation of equation (1) is shown on row twelve of figure 3.
The (: , 𝑗) operator is used to designate all row entities of the 𝑗𝑡ℎ column in 𝑱 being a difference in
perturbed vector 𝒇(𝒖𝑝) and original vector 𝒇(𝒖𝑖) with all entities being divided by ℎ. Additional
information on code vectorization can be found in the Vectorization section of the MATLAB user
documentation [5].

Figure 3. Serial Jacobian computation using MATLAB

 Code in figure 3 is specific to computation of the full Jacobian matrix or all matrix entities and storing
them in a dense format which includes any zero entities. Such computation can be expensive for large
systems and a significant reduction in computational cost can be achieved by taking advantage of known
patterns and sparsity. Through proper arrangement of state variables in 𝒖, the Jacobian for the multi-link
systems has the following block matrix format which is consistent with the general format given in [21].
Zeros sub-matrices are due to Lagrange’s method being used to derive governing equations which results
in large sets of equations in redundant coordinates and considerable sparsity for the Jacobian.

 8

𝑱 =

[

1

𝑑𝑡
𝑴 𝟎 𝟎 𝟎 𝚽𝑝

𝑇

𝟎
1

𝑑𝑡
𝑰𝑪𝑴 𝟎 [𝚽𝜀

𝑇𝚲]𝜀 𝚽𝜀
𝑇

−𝑰 𝟎
1

𝑑𝑡
𝑰 𝟎 𝟎

𝟎 −𝑰 𝟎
1

𝑑𝑡
𝑰 𝟎

𝟎 𝟎 𝚽𝑝 𝚽𝜀 𝟎]

 (5)

 Components of 𝑱 include diagonal sub-matrices 𝑴, 𝑰𝑪𝑴, and 𝑰 being mass, inertia, and identity
matrices respectively. Term 𝑑𝑡 applied to these matrices is the time step or increment used between states
for dynamic simulation. Constraint equations are stored in vector 𝚽 where 𝚽 = 𝟎 and subscripts 𝑝 and 𝜀
are used to denote partial derivatives with respect to position and orientation variables respectively.
Finally, the constraint forces or Lagrange multipliers are stored in column vector 𝚲. Sub-matrices for
mass, inertia and identity do not change for constant 𝑑𝑡 or within a given time step and are invariant.
Standalone identity matrices are invariant by definition. This leaves only sub-matrices containing 𝚽 for
numerical computation which dramatically reduces the amount of computational overhead and size of the
for-loop in figure 3. A more efficient strategy for computation of the Jacobian would now involve pre-
allocation and construction of a sparse matrix with invariant terms followed by computation of the 𝚽 sub-
matrix blocks in the last row, and the row two, column four block locations of equation (5). Previously
calculated 𝚽 blocks in the last row can then be transposed and inserted into the last column of equation
(5).

 The need for sparse versus dense format of the Jacobian is driven by both computer memory for
storage and computational cost of factorization. The Jacobian must be factorized each time a new version
is computed as it is part of a linear system being solved during iterations of Newton-Raphson based
solvers. Eliminating the storage of zeros and the processing of zero entities in sparse computational
algorithms can have dramatic effects on efficiency and become more apparent as systems increase in size.
Table 1 for example shows the wall time needed to solve a sample linear system Δ𝒖 = 𝑱−1𝑹 where 𝑱 is
stored in both sparse and dense formats for timing comparison. Variable Δ𝒖 denotes an incremental
change in state vector 𝒖, 𝑹 is a residual vector set to all ones, and Jacobian 𝑱 has been factorized into
lower and upper triangular elements versus taking the inverse for solution. The speed factor in table 1 is a
multiplier of how many times faster the sparse solver is compared to the dense, and the non-zero (NZ)
ratio is the number of non-zero terms divided by the total or 𝑁2 number of terms in 𝑱. It is apparent from
numerical values in the table that sparsity is significant and large performance gains in solution time can
be expected by using the sparse matrix format and solver. A detailed overview of sparse matrices and
sparse matrix operations in MATLAB can be found in [23].

 9

Table 1 Solution times using sparse and dense Jacobian (sec)
Links DOF sparse dense factor NZ ratio

200 1600 0.003 0.08 27.64 2.0E-03
400 3200 0.006 0.56 90.21 1.0E-03
600 4800 0.009 1.40 148.57 6.8E-04
800 6400 0.012 3.15 252.23 5.1E-04
1000 8000 0.016 5.87 372.81 4.1E-04
1200 9600 0.019 9.84 516.66 3.4E-04
1400 11200 0.023 15.06 664.97 2.9E-04
1600 12800 0.027 23.10 853.97 2.5E-04
1800 14400 0.031 32.24 1052.13 2.3E-04
2000 16000 0.034 43.29 1262.09 2.0E-04

Parallel Code Implementation

 Parallel processing of computational algorithms in MATLAB can be implemented using either parallel
for-loops, parfor, or by spmd. Parallel for-loops work only for the simplest of algorithms and each loop
must be totally independent from all others. The perturbed vector 𝒖𝑝 inside the for-loop shown in figure
3 is updated elementwise over the course of loop iterations such that a parallel for-loop cannot be used for
computing the Jacobian in this manner. The single program multiple data or spmd option however is
more versatile and allows for specific tasks to be assigned to specific processors. Once a parallel job is
started in MATAB, one processor is assigned the role of client while the remaining processors are
assigned the role of workers. Computation of the Jacobian can be accomplished by dividing the for-loop
in figure 3 over a specified number of processors using spmd. This requires creation of an indexing array
used to identify the start and finish column identification numbers based on desired matrix partitions.
Changes to the serial code are however minimal making this method easy to implement.

 The Jacobian can be stored using either distributed arrays, codistributed arrays or composite objects
when using the spmd option. Arrays are considered as distributed or codistributed as viewed from the
perspective of the client or worker processors. Distributed arrays are created on the client where
codistributed arrays are created on the workers themselves. Positive timing results for writing and
updating elements of these type arrays could not be obtained. This may be due to the client-worker
relation where writing new elements to workers causes a similar update to be performed on the client.
Explicit reference to how writing of elements to these arrays is performed could however not be found in
documentation and users do not have access to the underlying C-code used to write MATLAB software.
Composite objects on the other hand produced positive results for computing the Jacobian in parallel.
These objects exist on workers, have the same variable name on all workers, but store different data. The
downside of composite objects is that they must be converted back into a single matrix for use in
computations in their entirety. Parallel computation of the Jacobian using composites for example will be
stored in independent groups of columns on workers. If the Jacobian is then needed for use in a linear
system 𝑱Δ𝒖 = 𝑹, it will need to be converted into matrix form.

 A parallel version of the for-loop used to calculate the Jacobian in figure 3 is shown in figure 4. Code
is again specific to computation of the full Jacobian matrix in dense form. This provides for the most
compact, readable version of code to demonstrate spmd parallelization. Computation of the index array,
index, for parsing of the Jacobian is not shown on the figure. Variable 𝑤 is used to designate specific

 10

worker or processor identifications. The labindex function is used to distribute tasks being calculation of
specific columns of the Jacobian to specific workers. Column identification numbers all start with one for
composite objects on workers and an additional variable 𝑘 is used to distinguish between column
identification numbers for the entire Jacobian and sections being stored in composite objects.
Computation of the 𝚽 blocks only would require additional indexing for start and finish row
identification numbers versus processing of all rows as shown in figure 4. Final assembly of the Jacobian
using dense or sparse format would then be carried out after the spmd block of code is complete.

Figure 4. Parallel Jacobian computation using MATLAB

Code Timing Results

 The timing of computer code was accomplished using the 2015b version of MATLAB software and is
reported using wall time. The tic and toc functions in MATAB behave similar to a stopwatch where toc
provides for the total elapsed or wall time since the last initiation of tic. The cputime function offers an
alternative and was not used due to potential for error. Additional explanation of the two timing methods
can be found in the Measure Performance of Your Program section of the MATLAB user documentation
[5]. Here, the tic and toc functions are stated to be more reliable than cputime and significant difference
in reported times can occur due to hyperthreading where instructions are processed in parallel on a single
processor. Wall time may be considered a more conservative approach for characterizing performance of
computer code as it includes all communications overhead associated with parallel operations.

 Wall timing results for processing of the Jacobian are shown in tables 2 through 4. Each table includes
a timing comparison of serial to parallel code for a given number of links using a varying number of
processors (NP). The size of the Jacobian matrix or number of rows and columns is equal to the DOF
number. Wall time is reported in seconds where an associated speedup factor defined as the serial divided
by parallel time is used to indicate performance. Results were obtained using a Windows 7 laptop
computer with an Intel i7-3720QM processor and available 16 GB RAM. A maximum of 8 threads or
processors were available to MATLAB as workers and timing is initially reported using maximum

 11

resources. This decision was based on identifying the smallest DOF system with positive performance or
a speedup factor greater than one with maximum parallel communications overhead. The number of
links was then varied in an increasing manor until the speedup factor no longer demonstrated significant
gains in performance. At this point, use of computational resources is considered maximized with no
additional bandwidth available for further performance gains. Lines across the center of tables are used to
denote this breakpoint. The number of processors was then decreased while holding the DOF constant
showing an expected decrease in the speedup factor due to the reduction of computational resources.

 Table 2 considers computation of all entities or the full Jacobian matrix using composite objects only
and saves them using dense format which includes zero terms. Positive performance with a speedup
factor of 1.2 occurs for a 200 link, 1600 DOF system. As the number of DOF continues to increase,
performance is seen to level off at 8000 DOF with a maximum speedup factor of 3.8. Note that linear
speedup could not be obtained as the addition of processors does not come with additional memory.
Decreasing the number of processors while holding DOF constant at 8000, then provides for a minimum
speedup factor of 1.7 when using only two processors. Computations used for the Jacobian in table 3
were similar to those in table 2 with the exception of inclusion of time to convert the composite object to
a double precision matrix. The conversion is simple but cost is significant as seen by the overall
reduction in speedup factor when compared with corresponding values in table 2. Positive margin for
speedup now requires a 3200 DOF versus 1600 DOF system and performance levels out at 6400 DOF
versus 8000 DOF when using 8 processors.

 Table 4 provides results for a pre-allocated sparse Jacobian with invariant sub-matrices and
computation of the constraints or blocks containing 𝚽 only. Composite objects are used for the constraint
blocks and time to convert to sparse double precision format is included as well. Gains for parallel
performance are seen for systems up to 6400 DOF. Wall time is the lowest as compared to other methods
and use of sparse format will provide a significant speed advantage during a linear solution phase as
shown in table 1. This procedure for computing the Jacobian would be considered the most practical and
recommended as it takes advantage of known patterns, sparsity, and conversion to double precision
matrix format for use in solving a linear system.

Table 2 Calculation of full Jacobian, dense composite format (sec)
Links DOF NP serial parallel factor

200 1600 8 0.6 0.5 1.2
400 3200 8 3.3 1.6 2.1
600 4800 8 9.7 3.1 3.1
800 6400 8 18.6 5.3 3.5
1000 8000 8 30.5 8.1 3.8
1200 9600 8 45.3 12.0 3.8
1000 8000 8 30.5 8.1 3.8
1000 8000 6 30.0 9.1 3.3
1000 8000 4 30.2 11.5 2.6
1000 8000 2 30.2 18.0 1.7

 12

Table 3 Calculation of full Jacobian, dense matrix format (sec)
Links DOF NP serial parallel factor

200 1600 8 0.6 0.8 0.7
400 3200 8 3.2 2.5 1.3
600 4800 8 9.9 5.3 1.9
800 6400 8 19.0 9.2 2.1
1000 8000 8 32.3 15.5 2.1
1000 8000 8 32.3 15.5 2.1
1000 8000 6 32.3 16.3 2.0
1000 8000 4 32.2 17.7 1.8
1000 8000 2 32.4 24.8 1.3

Table 4 Calculation of block Jacobian, sparse matrix format (sec)
Links DOF NP serial parallel factor

200 1600 8 0.2 0.4 0.6
400 3200 8 1.3 0.8 1.6
600 4800 8 3.9 1.6 2.4
800 6400 8 7.8 2.7 2.9
1000 8000 8 11.8 4.0 2.9
1000 8000 8 11.8 4.0 2.9
1000 8000 6 11.3 4.9 2.3
1000 8000 4 11.3 5.9 1.9
1000 8000 2 11.4 8.4 1.4

Summary

 Successful development of explicitly defined parallel code for computing the Jacobian matrix was
completed using MATLAB. The spmd method using composite objects was found to be the only
procedure that produced positive results while use of the sparse as compared to dense format provided for
dramatic speed improvements for solutions to linear systems. Speedup of parallel code was demonstrated
on a shared memory PC and compared to serial code with underlying parallel operations using wall time.
This provided for a most conservative estimate for parallel code speedup as underlying parallel operations
are integral to MATLAB and wall time includes parallel communications overhead. Linear type parallel
speedup could not be achieved using the chosen performance metrics and computer architecture which are
quite common and may represent a typical MATLAB environment. Performance gains were however
demonstrated and an approximate three times speedup for the recommended sparse format, double
precision Jacobian matrix was achieved. The goal of demonstrating speedup for systems under 5000
DOF was also achieved being most applicable to smaller scale FE or MBD problems that can run
efficiently on PCs. MATLAB users running nonlinear FE and MBD codes on PCs should expect
significant performance gains when using sparse matrix operations and marginal parallel performance
gains for systems on the order of 3200 DOF and greater.

 13

Acknowledgements

 This work was funded by the Advanced Degree Program at NASA Langley Research Center.

References

[1] Boston University Information Services & Technology, 2017. MATLAB Parallel Computing

Toolbox Tutorial. http://www.bu.edu/tech/support/research/training-consulting/online-

tutorials/matlab-pct/, (accessed 02.06.17).

[2] N. Matloff, Programming on Parallel Machines, University of California, Davis, 2016.

http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf, (accessed 02.06.17).

[3] C. Moler, Parallel MATLAB: Multiple processors and multiple cores, MathWorks (2007).

https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-and-

multiple-cores.html, (accessed 02.06.17).

[4] MathWorks, 2013. MATLAB Answers. http://www.mathworks.com/matlabcentral/answers/95958-

which-matlab-functions-benefit-from-multithreaded-computation, (accessed 02.06.17).

[5] MATLAB R2015b Documentation, The MathWorks, Inc., 2015.

[6] K. J. Bathe, Finite Element Procedures, Klaus-Jürgen Bathe, 2006.

[7] About ADAMS/Solver, C++ Statements, MSC Software Corporation, 2015.

[8] B. Barney, Introduction to Parallel Computing, Lawrence Livermore National Laboratory, 2016.

https://computing.llnl.gov/tutorials/parallel_comp/, (accessed 02.06.17).

[9] Nastran Nonlinear User’s Guide, SOL 400, MSC Software Corporation, 2016.

[10] Abaqus Analysis Users Guide, Dassault Systèmes Simulia Corp., 2014.

[11] J. Ortiz, Introduction to Adams/Solver C++, Charts from the 2011 Adams user meeting, Munich,

Germany, 2011.

[12] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in Fortran 77: The Art of

Scientific Computing, second ed., Press Syndicate of the University of Cambridge, 1997.

[13] R. Neidinger, Introduction to automatic differentiation and MATLAB object-oriented programming,

SIAM Review, Vol. 52, No. 3, (2010) 545–563.

[14] R. Bartlett, D. Gay, E. Phipps, Automatic differentiation of C++ codes for large-scale scientific

computing, in: International Conference on Computational Science, 2006, pp. 525-532.

[15] ADIFOR. http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-77,

(accessed 02.06.17).

http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/matlab-pct/
http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/matlab-pct/
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-and-multiple-cores.html
https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-and-multiple-cores.html
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
https://computing.llnl.gov/tutorials/parallel_comp/
http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-77

 14

[16] C. G. Broyden, The convergence of a class of double-rank minimization algorithms, J. Inst. Math.

Appl. 6 (1970) 76–90.

[17] R. Fletcher, A new approach to variable metric algorithms, Comp. J. 13 (1970) 317–322.

[18] D. Goldfarb, A family of variable metric updates derived by variational means, Math. Comp. 24

(1970) 23–26.

[19] D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comp. 24

(1970) 647–656.

[20] L. Meirovitch, Methods of Analytical Dynamics, Dover Publications Inc., 2003.

[21] D. Negrut, A. Dyer, ADAMS/Solver Primer, MSC Software Corporation, 2004.

[22] G. Rose, D. Nguyen, B. Newman, Implementing an arc-length method for a robust approach in

solving systems of nonlinear equations, in: IEEE Southeast Conference, 2016.

[23] J. Gilbert, C. Moler, R. Schreiber, Sparse matrices in MATLAB: Design and implementation, J.

Matrix Anal. Appl. 13 (1992) 333-356.

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
 (757) 864-9658

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA-TM-2017-219655

L-20845

01-07-2017 Technical Memorandum

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

 MATLAB programming; Nonlinear equations; Parallel Jacobian

 Parallel Computation of the Jacobian Matrix for Nonlinear Equation
Solvers Using MATLAB

Rose, Geoffrey, K.; Nguyen, Duc T.; Newman, Brett A.

19

NASA

845953.01.03.04

Unclassified
Subject Category 61
Availability: NASA STI Program (757) 864-9658

 Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to
the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the
Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial
finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was
performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data
(spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors

was not achieved due to PC architecture.

