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Abstract 

For long duration missions of solar sail vehicles, the sail material needs to survive the harsh 
space environment as the degradation of the sail material determines its operational lifetime. 
Therefore, understanding the effects of the space environment on the sail membrane is essential 
for mission success. In this study, the effect of simulated space environments of ionizing radiation 
and thermal aging were investigated. In order to assess some of the potential damage effects on 
the mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester 
solar sail membrane. The solar sail membrane was exposed to high energy electrons (about 70 keV 
and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the 
tensile modulus, tensile strength and failure strain of the sail membrane decreased by 20 to 95%. 
The aluminum reflective layer was damaged and partially delaminated but it did not show any 
significant change in solar absorbance or thermal emittance. The mechanical properties of a pre-
cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging 
effects on metallized PEN (polyethylene naphthalate) film, will be discussed. 

 
 
Nomenclaure 

Symbols 

χc  crystallinity 
Hf  heat of fusion 
wf  specific total work of fracture 
we  specific essential work of fracture 
wp  non-essential work (plastic deformation) 
β   proportionality constant (plastic zone shape factor) 
L   ligament length 
 
Subscripts 

f   fusion (or melting) 
e   essential contribution 
p  plastic deformation (non-essentional contribution) 
 
Acronyms 

ASTM  American Society for Testing Materials 
COTS  Commercial Off the Shelf 
CTE  Coefficient of Thermal Expansion 
DENT   Double-Edge Notched Tension 
DMA   Dynamic Mechanical Analyzer 
DSC  Differential Scanning Calorimetry 
EWF  Essential Work of Fracture 
FT-IR  Fourier Transform Infrared 
HRSEM  High-Resolution Scanning Electron Microscope 
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IR   Infrared 
MD  Machine Direction 
MDSC  Modulated Differential Scanning Calorimeter 
MSFC  Marshall Space Flight Center 
NASA  National Aeronautics and Space Administration 
PEN   Polyethylene Naphthalate 
PET   Polyethylene Terephthalate 
SEM  Scanning Electron Microscopy 
TD  Transverse Direction 
TMA  Thermomechanical Analyzer 
UV   Ultraviolet 
UV-VIS-IR  Ultraviolet-Visible-Infrared 
 
 
 
1. Introduction 

Solar sails are attractive spacecraft propulsion systems that offer extended mission capability 
by deriving thrust directly from momentum transfer of solar photons, rather than onboard fuel [1-
2]. The transferred photon momentum is very small but the acceleration can be maximized by 
increasing the surface area of the sail. For long duration missions, the sail material needs to survive 
temperature fluctuations, ultraviolet (UV) rays, ionizing radiation, ultrahigh vacuum, and 
micrometeoroid impacts [3-7]. Since the degradation of the sail material controls the operational 
lifetime, understanding the effects of the space environment on the sail membrane is essential for 
mission success.  

There have been several studies of space environment effects on candidate sail materials such 
as aluminized Mylar® (polyethylene terephthalate, PET), Teonex® (polyethylene naphthalate, 
PEN), CP1TM (colorless polyimide) and Kapton® polyimide [5-7]. After exposure of high energy 
electrons, protons and UV rays, the degradation of physical properties of sail materials was 
determined. However, there is no systematic study to investigate the chemical changes induced in 
the polymer under simulated space environment exposure.     

In this study, we simulated the effect of the space environment of ionizing radiation, thermal 
aging, and impact damage on mechanical, thermal, and optical properties of a commercial off the 
shelf (COTS) polyester membrane to assess the degradation mechanisms on a feasible solar sail. 
A quantitative study of space environment effects on the solar sail can provide design guidelines 
to increase the reliability of solar sails, resulting in increased acceptance of this type of propulsion 
system. 

 

2. Experimental 

2.1. Materials 

PEN (Figure 1) as a sail core membrane was purchased from Dupont Teijin (Teonex® Q72, 
2μm thick). Metallized PEN was prepared by deposition of aluminum (1000Å) on the front side 

2



3 
 

of the membrane as a reflective layer and chromium (150Å) on the back side of the membrane as 
a thermal emitter, respectively (Astral Technology Unlimited, Inc.). 

 

2.2. Electron Irradiation Tests 

Electron irradiation tests were performed by the Space Environmental group at NASA 
Marshall Space Flight Center (MSFC). The metallized PEN film was exposed to electron radiation 
for nineteen days with a fluence of 1.04x1017 electrons/cm2. The electron beam energy and current 
were 70keV and 10 nA/cm2, respectively. The total exposure dosage was approximately 8.3 Grad. 
A Hitachi S-5000 high-resolution scanning electron microscope (HRSEM), with a field emission 
electron gun and in-lens detector, was used to examine the surface morphology of the metallized 
PEN film. Infrared (IR) spectra were taken in transmission mode with a Fourier Transform Infrared 
(FT-IR) spectrometer (Nicolet iSTM 5). 

 

2.3. Thermal Analysis 

Viscoelastic behavior of the metallized PEN film was characterized from storage and loss 
modulus at a heating rate of 1°C/min and 1 Hz in a dynamic mechanical analyzer (DMA Q800, 
TA Instruments). Thermal properties of melting, crystalline, and glass transition temperature of 
the metallized PEN film were characterized at a heating rate of 3°C/min with a modulation of 
±0.47°C for every 60 seconds using a modulated differential scanning calorimeter (MDSC, Q2000, 
TA Instruments). Coefficient of thermal expansion (CTE) was determined from the dimension 
change at a heating rate of 5°C/min in a thermomechanical analyzer (TMA, model 202, Netzsch). 

 

2.4. Thermal Aging Tests 

The metallized PEN film was exposed to elevated temperatures, and the mechanical and optical 
properties were measured. The films were affixed to glass slides to prepare for treatment at 
temperatures ranging from 75 to 275°C. The specimens were placed in a nitrogen purged 
convection oven (Blue M) and held at the treatment soak temperature for ten minutes. The treated 
specimens were examined under an optical microscope in reflectance and transmittance mode to 
examine cracking. Ultraviolet-visible-infrared (UV-VIS-IR) spectroscopy (PerkinElmer, Lambda 
1050 spectrometer) was performed in reflectance mode to determine the reflectivity from 250 to 
2400 nm at room temperature. 

 

2.5. Mechanical Property Tests 

Tensile properties of the PEN film were characterized according to American Society for 
Testing Materials (ASTM) Standard D882-12 [8]. Specimens (about 5 mm wide) were placed 
between grips with a gauge length of about 50 mm and tested at a rate of 5 mm/minute until failure. 

Mode I tearing tests were performed to calculate the essential work of fracture (EWF). Samples 
were prepared by cutting along two directions [machine direction (MD) and transverse direction 
(TD) of a film roll] to see the effect of cutting direction. Double-edge notched tension (DENT) 
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specimens 20 mm wide with 2, 4, 6, 8, and 10 mm ligament lengths were prepared using a 
straightedge and razor blade. The specimens were gripped with an initial gauge length of 40 mm 
and tested at a rate of 0.1 mm/minute until failure. The setup for this test is shown in Figure 2. 
Load-displacement graphs were generated, and the essential work of fracture calculated. 

Tear-propagation resistance in Mode III for the metallized PEN film was evaluated using 
ASTM Standard D1938-14 [9]. Trouser-shaped specimens 25 mm wide and 75 mm long with a 
vertical pre-crack of 50 mm were prepared using a straightedge and razor blade. The specimens 
were gripped at the two panels created by the crack with an initial grip separation of 50 mm. The 
top grip was extended at a rate of 250 mm/minute until the tear propagated through the entire 
length of the specimen, and load-displacement plots were generated.  The setup for this test is 
shown in Figure 3. 

To simulate potential impact damage on the sail membrane, holes and slits were introduced 
before tensile testing of the metallized PEN film. Specimens 20 mm wide with a gauge length of 
100 mm were prepared. The pre-cracks of 2 mm width were made with a razor blade and a 2 mm 
diameter circular die (Figure 4). Tensile testing was performed with an extension rate of 5 
mm/minute and load-displacement graphs generated. 

 

3. Results 

3.1. Electron Irradiation 

Figure 5 shows the appearance change of the metallized PEN film after electron irradiation of 
approximately 8.3 Grad. The irradiated films became wrinkled. This seemed to have originated 
from induced stress and thermal energy by the electron radiation. 

The surface morphology of the film was investigated by scanning electron microscopy (SEM) 
(Figure 6). Before irradiation, the film showed a smooth aluminum layer. However, after electron 
irradiation, the aluminum coating was damaged and delaminated exposing the PEN core layer 
underneath [Figure 6 (b)]. Even though the surface of aluminum coating was damaged, the solar 
absorbance of the aluminum side was unchanged (0.09 for control PEN film, and 0.09 for electron 
irradiated PEN film, Table 1). The thermal emittance of the aluminum side of the PEN film slightly 
increased from 0.05 for control PEN to 0.09 for irradiated PEN. 

Electron radiation exposure of the metallized PEN film led to a decrease in mechanical 
properties when compared to the control specimens, as shown in Figure 7 and Table 1. The change 
was obvious even before testing began because the samples were very brittle, and difficult to 
handle and set up for testing.  The elastic modulus of the PEN was reduced from 8.43 GPa to 6.56 
GPa, and the exposed specimens broke near one percent elongation, indicating substantial 
embrittlement. The tensile strength was reduced from approximately 165 MPa to 46 MPa. The 
degradation of mechanical properties could be explained by chain scission and crosslinking of 
polymer molecules from the high energy electron radiation. 

The electron radiation induced molecular degradation was observed using various 
experimental techniques. Figure 8 shows storage and loss modulus of metallized PEN film as a 
function of temperature. The storage modulus of the control PEN film was about 5 − 9 GPa in the 
range of -60°C to 120°C. Above the glass transition (α-transition) of about 140°C, the storage 
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modulus decreased and was about 1.3 GPa just before crystalline melting (Tm) near 270°C. After 
electron irradiation, both the overall storage modulus and the glass transition decreased (from 
140°C to 137°C). The most interesting observation was the significant increase in a loss modulus 
at β*-transition, representing the out-of-plane motions of naphthalene rings or the fluctuation of 
aggregates of naphthalene rings [10]. The ratio of loss modulus of α-transition and β*-transition 
for the electron irradiated PEN film decreased to 0.62 from the 1.19 for the control PEN film, 
which indicates an increase in the short segmental mobility induced from chain scission of main 
polymer chains by the high energy radiation. 

The chain scission was also established from the differential scanning calorimetry (DSC) 
thermogram (Figure 9) and FT-IR spectra (Figure 10). The control PEN film shows a clear melting 
peak at about 260°C with the first heating run and a high crystallinity (χc) of about 54%, 
determined by  

 ߯௖ = Δܪ௙(݉) Δܪ௙(ܿ)⁄      (1) 

 

where Δܪ௙(݉) is the measured heat of fusion of the semicrystalline PEN and Δܪ௙(ܿ) is the heat 
of fusion of 100% crystalline PEN (103J/g) [11]. With the second heating run, it showed a clear 
glass transition (at about 124°C), a crystalline peak (at about 190°C) and a Tm peak (at about 
260°C), in that order. On the contrary, the electron irradiated PEN film showed neither a clear 
glass transition nor a crystalline peak while showing a broad and small melting peak with the first 
heating run (χc of about 9%), which results from molecular chain degradation. 

Figure 10 shows the change of molecular structure of the metallized PEN film after electron 
irradiation. Compared to the peak for CH out of plane of aromatic moiety (760 cm-1), the peaks of 
=C-O (1240 cm-1), C-O-C (1178 cm-1), -O-C (1085 cm-1) and CH2 (1374, 1339 cm-1) of esters 
appear less intense, and apparent carboxylic acid characteristic peaks (the broad peak of -OH at 
about 3000 cm-1 and C=O at 1700 cm-1) begin to appear. This suggests that the PEN molecules 
were decomposed to some degree by the electron irradiation to yield carboxylic acid moieties 
(naphthanoic end groups). 

 

3.2. Thermal Aging Tests 

Thermal aging of metallized PEN film was examined. Figure 11 shows the coefficient of 
thermal expansion (CTE) of raw PEN film (without metal coatings) and metallized PEN film as a 
function of temperature. The CTE of the samples varied from about 9 to 13 ppm/°C for the range 
of 0 ~ 100°C. While the raw PEN films showed a large increase in CTE above the glass transition 
temperature (around 124°C), the metallized PEN films maintained a low CTE until reaching the 
melting temperature (about 260°C) because the metallic layers can restrict the macroscopic 
dimensional change of PEN film. This indicates that the operational limit of the metallized PEN 
film is more a function of the melting temperature, than the glass transition temperature. 

The change in appearance of the metallized PEN films after thermal treatment at various 
temperatures are shown in Figure 12. The PEN films were dimensionally stable up to about 150°C. 
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Above 150°C, there was some noticeable shrinkage below the melting temperature (around 
260°C). The sample at 300°C, [Figure 12. (h)] resulted in a significant degree of distortion. Cracks 
on the surfaces were observed by optical microscopy. 

Figure 13 shows spectral reflectance of metallized PEN films after thermal aging. The 
thermally aged metallized PEN films did not exhibit any significant change in reflectance, while 
the sample treated at 300°C showed a slight decrease in reflectance resulting from thermal 
distortion leading to surface cracks. 

The mechanical properties of metallized PEN films after thermal treatment are shown in Figure 
14. The Young’s modulus and tensile strength of thermally aged samples decreased slightly, while 
the elongation at the break of the sample treated at 225°C showed significant reduction. This would 
indicate that the metallized PEN sustains stable mechanical properties after thermal aging up to 
about 200°C. 

 

3.3. Simulated Impact Damage Effects on Mechanical Properties 

The primary cause of concern from micrometeoroids is physical damage upon impact. Erosion 
of surface materials can change spectral reflectance of sail membrane [3]. Even catastrophic failure 
can result from strain propagated tearing resulting from impact damage. Thus, tearing properties 
of a sail membrane as a function of damage geometry should be studied. Mode I tearing fracture 
of metallized PEN film was examined using the EWF method to separate the essential work to 
fracture the polymer (we) from the non-essential geometry-dependent work from plastic 
deformation (wp) using 

௙ݓ  = ௘ݓ + ௣ݓߚ  (2)               ܮ
 

where wf is the specific total work of fracture, β is proportionality constant (plastic zone shape 
factor) whose value depends on the geometry of the specimen and the crack and L is ligament 
length [12-13]. 

Tensile tests of the DENT specimens with various ligament lengths (Figure 2) were plotted in 
Figure 15 (a). The load-extension plot shows that the maximum load and extension before failure 
decreases as the ligament length decreases, while the shape of the plots for varying ligament 
lengths remains the same. From the load-extension graph, the total work of fracture was calculated 
to obtain the we and β [Figure 15 (b) and Table 2]. The we of metallized PEN films were 23.8 and 
27.3 kJ/m2 for MD and TD, respectively. These measured values are lower than the literature stated 
range of 55 – 75 kJ/m2, probably because the metallized PEN was manufactured by bi-axially 
stretching to induce high crystallinity (over 50%). Also, the bubbles in the film, which were 
discovered using microscopy, can lower fracture toughness. β, which represents geometry related 
plastic zone factor was also less than the literature value (5 – 23 MJ/m3). 

Mode III tearing fracture toughness was measured by a trouser tear test (Figure 3). The trouser 
tear specimen was gripped at the two panels created by the pre-crack and the load was recorded 
with crack propagation induced by the extension of the grip distance. An approximate load of 1.5 
mN for the metallized PEN was required for the pre-crack to propagate, which shows that the 
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material can fail catastrophically under a light load if an edge crack is present. Tearing energy and 
work are summarized in Table 2. 

To investigate the impact damage on the mechanical properties, holes and slits were introduced 
into the membrane. Metallized PEN films with pre-cracks from a die (2 mm diameter die hole) 
and blade cuts (2 mm wide slit) failed at a lower load and elongation than control specimens. The 
2 mm diameter die cut specimens failed at a tensile stress and strain of approximately 130 MPa 
and 2.5%. The specimens with a 2 mm wide slit failed at approximately 60 MPa and 1% 
elongation. Even though the pre-damage was introduced, the induced tensile stress is higher than 
the biaxial tension level of deployed solar sails [about 0.007 MPa (about 1 psi)] [14]. 

 

4. Conclusions 

The effects of select simulated space environments on mechanical, thermal and optical 
properties of a COTS polyester, metallized PEN solar sail membrane were investigated by electron 
irradiation, thermal aging and simulated impact damage tests. After a 8.3 Grad dose of electron 
irradiation, the tensile modulus, tensile strength and failure strain of metallized PEN film decreased 
by 20% to 95%. However, the membrane did not show any significant change in optical properties 
of solar absorbance and thermal emittance of the reflective side (aluminum layer). By thermal and 
spectroscopic analysis, polymer molecular degradation under electron irradiation was confirmed. 
Based on thermal aging testing, it is speculated that the operational temperature limit of a 
metallized PEN sail can be assumed to approach the melting temperature of PEN, with the 
elongation result from the thermal aging being a better predictor. The pre-cracked specimens that 
simulate potential impact damage exhibited significant degradation in tensile strength. Further 
quantitative studies of space environment effects such as proton, UV radiation or combined 
radiation on the solar sail membrane can provide design guidelines that will increase the reliability 
of solar sails. 
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Table 1. Physical properties of the metallized PEN. 
 
Metalized 

Film Modulus (GPa) Tensile Strength 
(MPa) 

Elongation at 
Break (%) 

Solar 
Absorbance 

Thermal 
Emittance 

Control PEN 8.43 ± 0.14 164.89 ± 5.35 18.20 ± 5.97 0.09 0.05 

Electron 
Irradiated 

PEN 
6.56 ± 0.23 46.42 ± 25.09 0.76 ± 0.44 0.09 0.09 

 
 
 
 
 
 
 
 
 
Table 2. Tear physical properties of the metallized PEN. 
 

Material 

Mode I Tear Fracture Mode III Tear Fracture 

Essential Work 
of Fracture, we 

(kJ/m2) 
Shape Factor, 

β (kJ/m3) Tearing Energy (N/m) Tearing Work 
(N⋅m) 

Metallized 
PEN 

1MD 23.8 ± 1.5 1.1 ± 0.2 1361.0 ± 58.9 72.0 ± 3.1 

2TD 27.3 ± 1.4 0.9 ± 0.2 1517.4 ± 179.2 80.2 ± 9.5 
1MD: Machine Direction 
2TD: Transverse Direction 
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Figure 1. Molecular structure of PEN. 

Figure 2. (a) Sample preparation and (b) setup during testing for DENT 
configuration (Mode I tear test).  

(a) (b)
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Figure 3. (a) Sample configuration and (b) setup during testing for Mode III 
tear-propagation resistance.  

Figure 4. Setup for tensile test of metallized PEN films with a 2 mm die-cut 
hole to simulate potential impact damage.  

(a) (b) 

1 in (25.4 mm) 
2 in (50

.8 mm)
 

 3 in (7
6.2 mm

) 
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Figure 5. Metallized PEN films on the sample holder plate (a) before electron 
irradiation and (b) after electron irradiation.  

(a) (b) 

Figure 6. SEM image of the aluminum coating surface of the metallized PEN 
films (a) before electron irradiation and (b) after electron irradiation.  

(a) (b) 

Al layer 

PEN
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Figure 7. Tensile properties of metalized (a) control PEN and (b) electron 
irradiated PEN films. Each color represents one of 5 tensile test specimens. 

(a) 

(b) 
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Figure 8. DMA curves of control and electron irradiated PEN films. 

Figure 9. DSC thermograms of control and electron irradiated PEN films. 
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Figure 10. FT-IR spectra of (a) control and (b) electron irradiated PEN films. 
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Figure 11. CTE of raw PEN films and metallized PEN films. 
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Figure 12. Appearance of metallized PEN films after thermal aging test at (a) room 
temperature, (b) 100°C, (c) 125°C, (d) 150°C, (e) 175°C, (f) 200°C, (g) 225°C and 
(h) 300°C. 
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Figure 13. Spectra reflectance of metallized PEN films after thermal aging at various 
temperatures from RT to 300°C.

Figure 14. Mechanical properties of metallized PEN films after thermal aging at 
various temperatures of room temperature (control), 200 and 225°C. 

18



19 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 15. Mode I tear fracture properties of metallized PEN films. (a) Load vs. 
displacement profile and (b) specific total work of fracture (wf) vs. ligament length 
(L). 
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Figure 16. Tensile properties of metallized PEN films with simulated impact 
damage. 
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For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. 
Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated 
space environments of ionizing radiation and thermal aging. Simulated potential damage effects on the mechanical, thermal and optical properties of a commercial off the 
shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons 
(about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail 
membrane decreased by 20 to 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or 
thermal emittance. The mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on 
metallized PEN (polyethylene naphthalate) film, will be discussed.  




