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Abstract 
 

Influence of shear stiffness degradation in an element, due to damage, on crack paths in 

uni-directional laminates has been demonstrated.  A new shear stiffness degradation 

approach to improve crack path prediction has been developed and implemented in an 

ABAQUS/Explicit frame work using VUMAT. Three progressive failure analysis models, 

built-in ABAQUSTM, original COmplete STress Reduction (COSTR) and the modified 

COSTR damage models have been utilized in this study to simulate crack paths in five uni-

directional notched laminates, 15o, 30o, 45o, 60o and 75o under uniaxial tension load. 

Results such as crack paths and load vs. edge displacement curves are documented in this 

report. Modified COSTR damage model shows better accuracy in predicting crack paths 

in all the uni-directional laminates compared to the ABAQUSTM and the original COSTR 

damage models.  

 
1.0 Introduction 

 
The use of composite materials in structural components has increased significantly in the last few 

years due to their inherent qualities of lower density and higher strength. Major portions of Boeing’s 787 
are made out of composite laminates. Also, the auto industry is rigorously working to introduce composite 
components in cars to reduce weight and increase fuel efficiency. In order to efficiently design structural 
components made from composite materials, one needs to understand their behavior thoroughly under all 
the design load conditions. 

 
In this regard, progressive failure/damage analysis (PFA/PDA) methods have been developed and 

are still being developed by researchers to simulate failure loads and crack paths in composite structures.  
Most of these methods use failure criteria to identify damage initiation at an integration point in an element, 
accompanied by a material stiffness or stress degradation approach based on damage modes to simulate the 
effects of material failure. These methods have proven to be partially successful in simulating failure loads 
or failure stress of composite components under certain loading conditions and structural configurations by 
many researchers [1-11].  Using PFA methods, full scale fuselage panels and a complete barrel with a 2 
bay notch was analyzed to understand the response of structures under tension and compression loading in 
ref [12]. Also, this study was performed to understand the interaction of a through thickness crack with 
stringers and frames.  In order to simulate or predict crack path accurately, finite element orientation plays 
a huge role and its effect has been demonstrated in refs [13, 14] in greater detail. A rectangular or square 
mesh where the element edges are aligned along 0o and 90o ply orientation predicts the crack path more 
accurately in cross plies (0o/90o) than in off-axis plies (+θo/-θo) of a laminate. This drawback is attributed 
to improper load re-distribution that takes place after material damage. To develop a finite element model 
of a laminate where the meshes are aligned along the ply orientation is a daunting task that leads to larger 
finite element models and a computationally expensive task. 

 
In this study, attention has been focused on understanding the influence of shear stiffness 

degradation in an element, due to matrix damage, on crack path in uni-directional laminates. A new shear 
stiffness degradation approach for off-axis plies will be developed to minimize the impact of improper load 
re-distribution that takes place in the damaged element, when its edges are aligned along 0o/90o angles. To 
demonstrate this phenomenon, five uni-directional notched laminates of 15o, 30o, 45o, 60o and 75o ply 
orientations are analyzed with ABAQUSTM, the original COSTR and the new modified COSTR damage 
models. All five models are discretized with square or rectangular quadrilateral shell elements and analyzed 
with the ABAQUSTM/Explicit solver. The results such as load vs. edge displacement and crack path in these 
laminates will be presented in the results section of this document.   
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2.0 Shear Stiffness Degradation Methodology 

 
In general, PFA methodology consists of damage detection through failure criteria, followed by 

damage evolution through stiffness or stress degradation and crack path simulation by element deletion in 
the model using a stress or stain based criterion.  As our objective in this study is to understand the influence 
of shear stiffness degradation on crack path in uni-directional laminates, the second step of the PFA 
methodology related to transverse and shear stiffness degradation of the built-in Abaqus model, the original 
COSTR [10] and modified COSTR damage models will be discussed briefly. Also, since uni-directional 
laminates under tension load are considered here, failure of these laminates are dominated by matrix damage 
rather than fiber damage.  Hence axial stiffness degradation profiles will not be discussed here. However 
readers are encouraged to read references [15, 10] for complete understanding of built-in Abaqus and 
original COSTR damage models respectively. Graphical representation of transverse and shear stress law 
adopted in built-in Abaqus damage models is shown in figure-1[15] below.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-1: Transverse and Shear Stress Degradation law of built-in Abaqus damage model. 
 
When the matrix failure criterion  is satisfied due to equivalent transverse or shear stress reaching the failure 
limit, the corresponding stresses are gradually decreased in a linear fashion until the area under the bi-linear 
curves shown in figure-1 is equal to the critical fracture energy of the matrix material. However, this stress 
evolution law is valid when the element’s characteristic length is less than or equal to 0.06 in. In case of 
elements whose characteristic length is greater than 0.06 in., the stresses are reduced to 0 instantaneously. 
In the case of the orginal COSTR damage model, transverse and shear stresses are reduced to 0 
instantaneously as shown in figure-2, when the matrix failure criterion is satisfied. 
 
 
 
 
 
 
 
 
 
 
 

Figure-2: Transverse and Shear Stress Degradation law of original COSTR damage model. 
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However in the modified COSTR damage model, the transverse and shear stresses are reduced to 
0 instantaneously in plies where the fibers are aligned parallel to the loading direction.  In the case of plies 
where fibers are not parallel to the loading direction, the transverse stress is reduced to 0 instantaneously 
but the shear stress is reduced by the matrix volume fraction and allowed to reach max shear strength limit 
and maintain that level until a failure strain criterion is satisfied. The graphical representation of the stress 
degradation approach adopted in the modified COSTR damage model is shown in figure-3. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-3: Transverse and Shear Stress Degradation law of modified COSTR damage model. 
 
 The intent for degrading shear stress as shown in figure-3 stems from the reasoning that even when 
matrix damage occurs at a material point, the shear stiffness of the element is not completely lost due to the 
fibers still being intact. 
 
 
 
 
 
 
 
 
 
 
 
 

a. Load PXY Parallel to Fiber (Off-Axis Plies) 
 

 
 
 
 
 
 
 
 
 
 

b. Load PXY Inclined to Fiber (Off-Axis Plies) 
 

Figure-4: Hypothesis for Shear Stiffness Degradation Approach. 
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For example consider an element where the fiber is parallel to the load Pxy as show in figure-4a. 
Considering the loading direction, this element fails due to shear stress reaching the strength limit and the 
fiber does not offer any stiffness in the shear direction.  Hence the shear stress is reduced to 0 
instantaneously in plies where fibers are parallel to the loading direction. Similarly looking at the element 
in figure-4b, one can observe that, the fiber offers some resistance to shear deformation along the loading 
direction even after the matrix is damaged due to transverse or shear stresses reaching their strength limit. 
Hence the shear stiffness contribution due to matrix is removed by reducing shear stiffness by the matrix 
volume fraction (Vm) of the lamina. This reasoning is currently applied to uni-axial loading but may be 
easily modified and verified latter for multi-axial loading. 
 
 Another modification made to the modified COSTR damage model is in the matrix damage 
detection criterion. Along with the Hashin-Rotem failure criterion for the matrix material [10], the strain in 
the fiber direction should be positive under tension and negative under compression for a material point to 
be considered as damaged.  This stress and strain criteria along with above mentioned shear stiffness 
degradation approach is found to predict cracks in uni-direction laminates with better accuracy even when 
the element edges are not aligned along the fiber direction. 
 
3.0     Description of a Uni-directional Laminate Considered in Verification of 

Modified COSTR Damage model 
  

Geometric and finite element mesh description of the notched uni-directional laminate is shown in 
figure-5. Fiber orientations of 15o, 30o, 45o, 60o and 75o were chosen to show the range of applicability of 
the hypothesis. The notch is 0.125 in. wide and 0.5 in. long. The laminates’ material system is T800/3900-
2 and its properties and strengths are presented in table-1. The left edge of the specimen is fixed in all 
degrees of freedom (DOF). The right edge is fixed in all DOF except the horizontal (X) direction. An axial 
displacement of 0.05 in. along X direction was applied to the right edge of the coupon. The S4R shell 
element size is approximately 0.06 in. by 0.06 in. PFA of the laminates were performed using the 
Abaqus/Explicit solver. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-5: Geometric Description & Finite Element Mesh of Notched Uni-directional Laminate. 
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Table 1: Properties and Strengths of T800/3900-2 Material System. 
 

Properties Values 

E1 (Msi) 23.2 

E2 (Msi) 1.3 

G12 (Msi) 0.9 

Nue12 0.28 

XT (Ksi) 412.0 

XC (Ksi) 225.0 

YT (Ksi) 8.72 

YC (Ksi) 24.3 

SXY (Ksi) 13.76 

GcFT (in-lbs/in2) 232.5 

GcFC (in-lbs/in2) 303.5 

GcMT (in-lbs/in2) 1.58 

GcMC (in-lbs/in2) 4.49 

 
4.0 Progressive Failure Analysis Results 

 
 Results such as crack paths obtained from progressive failure analysis of uni-directional laminates 
are presented in figures 6-10. In figure-6 one can notice that the crack paths (red colored elements) predicted 
by the modified COSTR damage model are inclined very closely along the 15o fiber angle. The Abaqus 
built-in damage model predicts crack paths also close to 15o angle.  However the original COSTR damage 
model predicts crack paths along a 45o angle. For the 15o uni-directional laminate, due to its geometric 
configuration and fiber orientation, the stress concentration is higher at bottom left hand and top right hand 
corners than at the notch tips.  Hence the cracks initiate and propagate from these two corners firsts and 
then from the notch tips.  A similar phenomenon was also noticed in the 30o uni-directional laminate as 
shown in figure-7.  Even in this laminate, the stress concentration is higher at bottom left hand and top right 
hand corners and hence the cracks initiates from these two corners first as predicted by the modified COSTR 
damage model. The crack originating from the right hand corner is more closely aligned along the 30o angle 
than the one that originated from the left hand corner.  In the case of crack paths predicted by built-in 
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Abaqus and the original COSTR damage model, the crack paths are not as well aligned along the 30o angle 
but the damage initiation points are similar to the modified COSTR damage model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6: Crack Paths in a Notched 15o Uni-directional Laminate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-7: Crack Paths in a Notched 30o Uni-directional Laminate. 



 

 
 

7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-8: Crack Paths in a Notched 45o Uni-directional Laminate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-9: Crack Paths in a Notched 60o Uni-directional Laminate. 
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Figure-10: Crack Paths in a Notched 75o Uni-directional Laminate. 
 

In figures 8-10, the crack paths predictions in the 45o, 60o and 75o laminates are presented 
respectively.  The crack path orientations in these (45o, 60o and 75o) laminates as predicted by built-in 
Abaqus damage model are perpendicular to the loading direction where the crack paths are self-similar in 
nature originating from the notch tips. Similar trend was noticed in the crack path orientation predictions 
by original COSTR damage model except that the crack paths are very well defined and tend to propagate 
at an angle as they reached the free longitudinal edges. However the modified COSTR damage model 
predicts crack paths more aligned along the fiber direction. 
  
 Even though the intention of this study was to develop and verify a shear stiffness degradation 
procedure that predicts crack paths aligned along the fiber direction in a uni-direction laminates, load vs. 
edge displacement curves for all of the above 5 laminates are presented in figures 11 for the sake of 
completeness.  The failure load predicted by all 3 damage models is same for a 15o uni-directional laminate 
as presented in figure 11a. In case of the built-in Abaqus damage model, the load drops to around 1500 lbf 
and oscillates around this load level.  This phenomenon could be due to artificial damping energy applied 
by the solver to avoid rapid deformation associated with the rotation of a node related to a failed element 
or to a rapid reduction in stiffness. However the original and modified COSTR damage models predict the 
load to drop and oscillate around 0 lbf load level.  Also, similar phenomenon was noticed in the 30o laminate 
except that the load dropped and oscillated around 500 lbf load level as predicted by the built-in Abaqus 
damage model as presented in figure-11b. For this laminate, the peak load predictions by the original and 
modified COSTR damage models are slightly lower than the load predicted by built-in Abaqus damage 
model. In case of the 45o, 60o and 75o uni-directional laminates, the peak load predictions by all the three 
damage models are within 10% of each other. For these laminates, the load drops to zero lbf and oscillates 
around this load level as shown in figures11c-e. For the 75o laminate, the drilling degree of freedom (dof) 



 

 
 

9 

was fixed for all the nodes in the finite element models that were analyzed using the modified and original 
COSTR damage models. This was done to prevent, excessive rotation with respect to the normal direction 
of the plate, in one of the nodes of a failed element.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. 15o Uni-directional Laminate                                          b. 30o Uni-directional Laminate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
c. 45o Uni-directional Laminate                                          d. 60o Uni-directional Laminate 

 
 

Figure-11: Load vs. Edge Displacement of Notched Uni-directional Laminate. 
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e. 75o Uni-directional Laminate 
 

Figure-11: Load vs. Edge Displacement of Notched Uni-directional Laminate - Con’t. 
 
5. Conclusion 
 
 Progressive failure analyses of 5 uni-directional laminates with the built-in Abaqus, original and 
modified COSTR damage models were performed using the Abaqus/Explicit solver.  Results such as crack 
path predictions and load vs. edge displacement curves, predicted by all the three models are presented.  
The new shear stress stiffness degradation procedure coupled with a slightly modified fiber strain criterion, 
implemented in modified COSTR damage model, seems to predict crack paths that are aligned along the 
fiber orientation angle for all 5 laminates. However with the built-in Abaqus and original damage models, 
the crack path predictions are away from the fiber orientation angles.  The built-in Abaqus damage model 
predicts crack path close to the fiber orientation angle in case of a 15o laminate. Verification of the new 
shear stiffness degradation procedure was performed on uni-directional laminates under a uni-axial tension 
loading condition.  However the influence of the shear stiffness degradation procedure in a failed element, 
on crack path predictions, when the element edges are not aligned along the fiber direction is demonstrated 
adequately using the built-in Abaqus, original COSTR and modified COSTR damage models.  The 
modified COSTR damage model, minimizes the extent of improper load distribution that occurs in a failed 
element due to the matrix damage mode to a great extent and hence simulates crack paths which are aligned 
along the fiber orientation angle. 
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