

The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems

Michael Abramson Mohamad Refai Crown Consulting Inc.

Confesor Santiago

NASA Ames Research Center

Outline

- Background
- Motivation
- GRACE Algorithm at a Glance
- Generic Conflict Evaluator (GCE)
- Generic Resolution Advisor (GRA)
- Evaluation of GRACE Algorithm
- Conclusion

Integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS)

- Detect-and-Avoid (DAA) system must enable UAS to steer clear of potential collisions with other aircraft
- Replace the FAA's "see-and-avoid" requirement when there is no pilot onboard with the same or better safety
 - How to quantify "well-clear"?
 - How to communicate with ATC and pilots-in-control?
 - How to interoperate with TCAS or ACAS-XU?
 - How to ...?

The Problem:

How to build a model of DAA system that would help establish requirements to future DAA systems?

Motivation

The Need:

Conflict detection and resolution algorithm for DAA system modeling

• Flexible

to use as a testbed for evaluating new features of DAA systems

• Fast

for real-time (human-in-the-loop) and faster than real-time (parametric and NAS-wide) simulations

Lightweight

easy to integrate in our DAA system model

Flexible: open architecture

- Use any suitable trajectory predictor
- Configurable
 - separation standards
 - maneuver types (horizontal / vertical / speed)
 - cost functions
- Composed of two loosely coupled algorithms
 - Generic Conflict Evaluator (GCE)
 - Generic Resolution Advisor (GRA)
- **Fast**: execution time ~ milliseconds

Lightweight: seamlessly integrated into DAA simulation

- Simple API and implementation
- Small jar with minimal dependencies

Definitions:

- **Ownship**: aircraft controlled by DAA system
- Intruder: other aircraft that can create a collision threat
- Separation standard: a logical condition of safe separation
- Violation (loss of separation): violation of separation standard
- Threat: violation properties
 - Severity level
 - Closest Point of Approach (CPA)
 - Time of first loss of separation

0 ...

- **NMAC**: Near-Mid-Air-Collision / violation of NMAC zone
- Encounter (conflict): a flight situation resulting in violations occurred at least at some trajectory states

Accepts multiple separation standards configurable to cover the wide range of spatial and temporal scales

- Horizontal separation or Horizontal Miss Distance HMD
- Vertical separation VSEP
- Time metrics
 - *tau* or *tauMod* (tau with distance modifier *DMOD*)
 - altitude-dependent tau (as per TCAS sensitivity levels)
 - vertical tau (time to co-altitude)
 - time to CPA or to first loss of separation

Examples

- DAA Well Clear as defined by the Minimum Operational Performance Standards (MOPS) for DAA systems (expected to be published in June 2017): HMD > DMOD = 0.66 nmi, VSEP > 450 ft, tauMod > 35 sec
- NMAC (as defined for TCAS): 500 ft x 100 ft

Grid-based threat detection

- 1. Request predicted intruder trajectories at discrete time steps
- 2. Determine grid cell size from separation standards and max. speeds
- 3. Map intruders to grid cells (stored as a time sequence of hash maps)
- 4. Detect threats from intruders mapped to cells in proximity to ownship

Bounding box based on separation standards

> (max. speed) x (time step)

Start from CPA for highest priority threat from GCE

Extrapolate trajectories backward from CPA

NASA

Generic Resolution Advisor (GRA)

Apply Simple Maneuver to linearized ownship trajectory

NASA

Generic Resolution Advisor (GRA)

Apply Simple Maneuver to linearized ownship trajectory

Re-evaluate the candidate resolution for all intruders

Find the best solution using a configurable cost function

- Threat of collision cost:
 - penalizes for collision threats from all intruders
 - naturally dominates when close to collision
- Maneuver change cost: penalizes frequent changes of maneuvers
- Rank cost: favors the right-of-way compliant maneuvers
- Maneuver strength cost: penalizes too aggressive maneuvers
- Other costs can be added if needed

NAS-wide 24-hour study

- About 20K UAS missions distributed geographically and temporally (Ayyalasomayajula et al, 2013)
- VFR traffic based on recorded nation-wide radar data
- Transitional class E airspace
- Mix of cooperative and non-cooperative traffic
- DAA surveillance included a directional airborne radar with 8-nmi range
- Possible late detections by surveillance due to
 - "Noisy" VFR tracks
 - Limited sensor field of view
- Unknown intruder intent
- Separation standards based on DAA Well Clear

Simulations

- 1. Unmitigated: detection only, no resolutions (baseline)
- 2. **Mitigated**: detection and resolutions with immediate execution and "recapture"

Metrics

- Violations: DAA Well Clear violated
- **NMAC**: NMAC separation standard violated
- **Predicted**: per cycle (at every simulation timestep)
- Actual: per encounter (at CPA)
- S_{NMAC}: separation at CPA relative to NMAC: exceed 100% for Actual NMAC; lower values correspond to larger separations

NAS-wide study: effect of mitigation

Simulation	Predicted	Actual	Predicted	Actual	$S_{\rm NMAC}$ (%)		
	Violations	Violations	NMAC	NMAC	Mean	Max	
Unmitigated	115409	1894	2220	44	29.4	546.3	
Mitigated	14394	359	68	0	20.2	92.2	

- Mitigation substantially reduced the number of violations
- Remaining violations are mostly due to late detections by surveillance or unexpected intruder maneuvers
- Mitigation eliminated **all** actual NMACs

Conclusion

GRACE Algorithm

- Met performance requirements of DAA simulations
- Validated and used to inform DAA MOPS in a number of
 - human-in-the-loop experiments
 - flight tests with live aircraft
 - NAS-wide simulations and parametric studies
- Can be used by manufacturers and developers of
 - decision support tools for pilots in command
 - systems for fully autonomous UAS DAA operations
 - research and automation software for manned flights

Future work

• Improve robustness of DAA resolutions, taking into account uncertainties of intruder positions and intent

Contact Michael Abramson Senior Engineer Crown Consulting Inc.

michael.abramson@nasa.gov

Backup Slides

Why GRACE?

General purpose conflict detection and resolution algorithm

- Fast and lean
- Designed without any assumptions regarding:
 - temporal and spatial scales
 - performance capabilities of aircraft
 - sensor and communication systems
 - degree of autonomy
- Can be used:
 - in decision support tools for ground pilots
 - in fully autonomous UAS DAA operations
 - potentially in manned flights
- Used extensively in research on UAS DAA systems

: The U.S. Congress mandated the "safe integration" of Unmanned Aircraft Systems (UAS) in the National Air Space (NAS)

: The FAA aviation rulemaking committee is looking into amending Part 91.113 that prescribes aircraft right-of-way rules, to allow for an electronic "Detect-and-Avoid" (DAA) system enabling UAS to steer clear of potential collisions with other aircraft

: The RTCA is developing the minimum operational performance standards (MOPS) for a UAS DAA System

2013: NASA developed a portable software system, Java Architecture for DAA Extensibility and Modeling (JADEM)

Background

UAS Integration in the NAS: NASA Ames role

- determine the required information to be displayed in the Ground Control Station (GCS) to support the development of standards and guidelines through prototyping and simulation
- analyze integration of UAS control and communication system and ATC communications to validate recommendations for regulations and standards
- collect and analyze UAS hazard and risk related data to support safety case recommendations for the development of certification/regulations
- conduct a "virtual" type design certification effort to develop a "UAS playbook" for industry to obtain type design certificates
- develop a relevant test environment to support evaluation of UAS concepts and technologies using a Live Virtual Constructive – Distributed Environment (LVC DE)
- instantiate a GCS with display/information to demonstrate compliance with requirements

Design philosophy

K eep It Simple, Stupid	 Simple interface and customization Few generic classes vs. many specialized classes Use Bridge and Adaptor design patterns
Don't Repeat Yourself	 One system - many clients Unified unit conversion Low-level flight data management

JADEM

Services and spinoffs

- Grid-based mapping for any 2D targets
 - $\circ~$ useful for fast search of "neighbors" in 2D space
- Unit conversion and operations with dimensional variables
 - time, space, speed, angle, and mass variables
- Generic flight data management classes
 - natural "language" to express any data, constraints, and operations for aircraft states and entire flights
- Multimodal Adaptable Trajectory Generator (MATG)
 - a general purpose TP, more flexible than others
- Generic surveillance (sensors) model
- GRACE

Overview of GRACE Algorithm

High-level architecture

Key ideas

- Threat evaluation with configurable separation standards
- Grid-based mapping (Von Viebahn, Watkins)

Outputs

- All intruder states mapped to 2D cells for all timesteps up to a specified look-ahead time
- Violations of separation standards (threats) with Closest Points of Approach (CPA)

Separation standards (multiple severity levels)

- Horizontal and vertical separation
- Horizontal miss distance
- Tau-separation, which can be a

simple tau: $\tau = -\frac{r}{dr/dt}$, or modified tau: $\tau_{mod} = -\frac{r-d_{mod}^2/r}{dr/dt}$, or

altitude-dependent tau as defined by TCAS sensitivity levels

• time to separation as a filtering condition.

Key ideas

- Local optimization at CPA for highest priority threat
- Discretized solution space by considering a small set of simple maneuvers
- Each candidate resolution is represented by a single Trajectory Change Point (TCP)
- Call GCE to re-evaluate the candidate resolutions for all intruders

Outputs

- A set of conflict-free resolutions (one for each simple maneuver)
- The best (least cost) solution

TCP for linearized trajectories

Parametric study

- 180 encounter geometries for demanding conditions
- Configurations
 - Baseline with "perfect" omnidirectional sensor and immediate execution of GRACE maneuvers
 - Directional airborne radar model paired with a tracker with and without sensor error ("noise")
 - Model of delayed execution of GRACE maneuvers

NAS-wide study

- UAS missions and recorded VFR traffic for 24 hours
- Baseline configuration

Metrics

- Violations: any separation standard violated
- **NMAC**: Near-Mid-Air-Collision zone (500 x 100 ft) penetrated
- Predicted: per cycle (at every simulation timestep)
- Actual: per encounter (at CPA)
- **Changes Per Encounter**: number of changes in resolution type divided by the number of encounters
- **Failure Rate**: a ratio of number of Actual Violations to number of encounters in %
- **S_{NMAC}**: separation at CPA relative to NMAC: exceed 100% for Actual NMAC; lower values correspond to larger separations

Parametric study: effect of surveillance system

Sensor	Predicted Violations	Predicted NMAC	Changes per Encounter	Actual Violations	Failure Rate (%)	$S_{\rm NMAG}$ Mean	c (%) Max
Omnidirectional	209	174	0.056	1	0.6	15	15
Directional perfect	246	149	0.006	9	5.1	34.3	39.5
Directional noisy	380	4	1.11	13	7.3	31.8	46.8

- Resolved all conflicts that were not detected too late
- Number of changed resolutions per encounter
 - \circ $\,$ very low for perfect sensors
 - increased for noisy sensors due to large vertical errors of non-cooperative radar sensor

Parametric study: delayed pilot response

Total Pilot	Predicted	Predicted	Changes per	Actual	Failure	$S_{ m NMAC}$ (%)	
Delay	Violations	NMAC	Encounter	Violations	Rate $(\%)$	Mean	Max
10 seconds	2316	1849	0.64	1	0.6	15.6	15.6
15 seconds	3419	2636	1.00	6	3.3	8	12.5
20 seconds	4686	3463	1.27	7	3.9	9.9	14.7

Even for largest pilot delay (20 sec):

- All NMACs avoided with a comfortable safety margin
- Less than 4% encounters with Well Clear violations
- ~1 changed resolution per encounter

Pilot delay assumed by GRACE (the algorithm delay): 15 sec