

A review of noise and vibration control technologies for rotorcraft transmissions

Justin J. Scheidler

Vivake M. Asnani

Universities Space Research Association

NASA Glenn Research Center Materials & Structures Division Rotating & Drive Systems Branch Cleveland, OH 44135

Acknowledgements:

• NASA Revolutionary Vertical Lift Technology (RVLT) Project

- Introduction
- Noise and vibration control technologies
 - Mature technologies
 - Emerging technologies
- Observations, recommendations, and conclusions
- Disruptive trends in rotorcraft development

2

Introduction

- Noise and vibration control technologies
 - Mature technologies
 - Emerging technologies
- Observations, recommendations, and conclusions
- Disruptive trends in rotorcraft development

Introduction

Rotorcraft have the potential to...

- Improve accessibility of routine air travel
- Reduce airport congestion

Current limitations

- Range, speed, and payload capacity
- Safety / reliability
- Extreme cabin noise levels (>110 dB)

Noise and Vibration control technologies

- Improved passenger and environmental acceptance
- Increased service life

National aeronautics security goals ^[1]	reduce main rotor gearbox noise by 20 dB		
	reduce vibratory loads by 30%		
NASA's Rotary Wing Project goal ^[2]	reduce cabin noise below 77 dB		

1. Security and Homeland Defense Goal #2, 2010 National Aeronautics R&D Plan

2. Subsonic Rotary Wing Project goals, 2011 ARMD Program and Project overview

Typical Cabin Noise Spectrum

National Aeronautics and Space Administration

Example Rotorcraft Driveline

Cabin Noise Trends

- Maximum noise within 500 or 1000 Hz octave bands
- Military, utility (85-110 dB) louder than civil (86-94 dB)
- As gross weight increases...

Military get louder civil get quieter

- Low-speed, final stage gearing has greatest impact on cabin noise
 - Peak noise in 7 out of 8 cases
 - Most harmonics in speech band

Scope and Organization

Scope

• Vibration control treatments close to the gear mesh source

<u>Considered</u>	Not considered
transmission	rotor blades and hub
strut/mount connection to fuselage	gas turbine engines
	fuselage

• Journal & conference papers, NASA & U.S. Army reports, U.S. patents

Organization

- Introduction
- Noise and vibration control technologies
 - Mature technologies
 - Emerging technologies
- Observations, recommendations, and conclusions
- Disruptive trends in rotorcraft development

Mature Technologies: Source Control

• Primary gear vibration sources: static transmission error (STE), mesh stiffness variation, friction, and planet location changes

Gear tooth profile optimization

 STE minimized using involute spur / helical and Litvin's ^[10] bevel / spiral-bevel tooth profiles

High contact ratio (CR) and helical gears

 Oswald et al. ^[11] measured noise due to gear type, profile, and CR – total CR is most important, helical 2-17 dB quieter than spur

Isotropically-superfinished (IS) gear teeth

• Hansen et al. ^[12] installed IS gears in S-76C+, full-scale lab testing showed 3.7-7 dB decrease in bull and spiral-bevel stages

Planet phasing

- Schlegel et al. ^[13] demonstrated 11 dB noise reduction in spur planetary
- 10. Litvin et al. 2002 Mech. Mach. Theory 37(5):441-459.
- 11. Oswald et al. 1998 Gear Technology 15(1):10-15.
- 12. Hansen et al. 2006 AGMA Tech. Paper 06FTM02.
- 13. Schlegel et al. 1967 Proc. ASME Design Eng. Conf. 67-DE-58.

Mature Technologies: Path Control

Active gearbox struts

- Maier et al. ^[19] flight tested a set of active struts: 11 dB lower cabin noise at primary gear tone, insufficient authority for multi-tonal control
- Flight testing by Hoffmann et al. ^[20]: 19.5 dB at 1st harmonic, 4-8 dB at higher harmonics

Active noise control via actuation of fuselage at transmission mounts

- Millott et al. ^[21] flight testing on S-76: primary gear tone avg. reduction: 18 dB (steady flight), 8-14 dB (maneuvers)
- Implemented in Sikorsky S-92 Helibus

- 19. Maier et al. 2002 Proc. 8th AIAA/CEAS Aeroacoustics Conf.
- 20. Hoffmann et al. 2006 Proc. 12th AIAA/CEAS Aeroacoustics Conf.
- 21. Millott et al. 1998 Proc. AHS 54th Annual Forum.

46. Strehlow et al. 2002 U.S. Patent 6480609 B1. 47. Bebesel & Jaenker, 2008, U.S. Patent 7453185 B2.

National Aeronautics and Space Administration

Review of noise & vibration control tech, for rotorcraft transmissions 11

- Introduction
- Noise and vibration control technologies
 - Mature technologies
 - Emerging technologies
- Observations, recommendations, and conclusions
- Disruptive trends in rotorcraft development

Emerging Technologies: Source Control

Magnetic gears

- Potential benefits: higher reliability, dramatically lower vibration, and improved loss of lubrication
- Paden ^[23] built 15 kW (20 hp) prototype with low mass (294% of optimized, non-magnetic version)
 - Prediction: 122% of non-magnetic when scaled up to 300 kW (402 hp)

On-the-gear passive and active control

- Kish ^[24] introduced gear with elastomeric band for torsional isolation
 - 3-7 dB reduction at 1st, 2nd harmonics
- Guan et al. ^[26] modeled gearbox actuation concepts
 - On-gear challenging slip rings, high force
 - Shaft control promising lower force, simpler

22. Jian et al. 2010 IEEE T. Energy Conver. 25(2):319-328.
 23. Paden 2015 NASA Report No. A1.06-9338.
 24. Kish 1993 NASA Report No. NASA-CR-191079.

25. Chen et al. 2000 Smart Mater. Struct. 9(3):342-350.26. Guan et al. 2004 J. Sound Vib. 269(1-2):273:294.

National Aeronautics and Space Administration

Review of noise & vibration control tech. for rotorcraft transmissions

Emerging Technologies: Source Control

Active transverse vibration control of shafts

- Rebbechi et al. ^[27] 2 magneto actuators along LOA, lab testing: 1st (20-28 dB), 2nd (5-13 dB), and 3rd (0-2 dB) harmonics reduced
- Guan et al. ^[28] 1 piezo actuator along LOA, lab testing: 18 dB (1st harmonic), 2-6 dB (1st + 2nd harmonics)

Piezoelectric bearings and shaft attachments

- Atzrodt et al. ^[30] bearing with 4 shunt-damped piezos, 17.5 dB lower transmissibility (1st harmonic)
- Pinte et al. ^[31] active bearing, 2 piezo actuators, transmitted force lowered 5-45 dB over 400-900 Hz

Periodic shafts

- Asiri et al. ^[32] geometric or material periodicity, 0-40 dB lower transmissibility when isolating small gearbox
- Asiri et al. ^[33] active piezo / metal periodicity, 10-30 dB better than passive periodic in stop bands
- 27. Rebbechi et al. 1999 Proc. Active Cont. Sound Vib. Conf.
- 28. Guan et al. 2005 J. Sound Vib. 282(3-5):713-733.
- 29. Montague et al. 1994 NASA Report No. NASA-TM-106366.
- 30. Atzrodt et al. 2009 Proc. 16th Intl. Cong. Sound Vib.
- 31. Pinte et al. 2010 J. Sound Vib. 329(9):1235-1253.

National Aeronautics and Space Administration

33. Asiri et al. 2006 Smart Mater. Struct. 15:1707-1714.

32. Asiri et al. 2005 J. Vib. Control 11:709-721.

14

Force transfer links Damping elements

Emerging Technologies: Path Control

Elastomeric mounts for hard-mounted transmissions

- Yoerkie et al. ^[35] lab testing in very stiff rig: 0-60 dB over 0-5.5 kHz
 - Flight certification issues, difficult to retrofit

Variable stiffness mounts

• Scheidler et al. ^[34] developed mount with real-time stiffness control, testing: modulus tuned up to 22 GPa and 500 Hz

Nonlinear concepts and negative stiffness mechanisms

- Provide high static stiffness and low dynamic stiffness
- To date, implemented in very low frequency isolators
 - Suspending large aircraft in "free" BC during ground vibration testing ^[36]

34. Scheidler et al. 2016 Smart Mater. Struct. 25(3):035007.35. Yoerkie et al. 1986 NASA Report No. NASA-CR-178172.

36. Woodard et al. 1991 J. Guid. Control Dynam. 14(1):84-89.

Emerging Technologies: Path Control

Periodic elastomeric isolation mounts

- Szefi et al. ^[37-39] developed elastomer/metal periodic mounts with embedded antiresonant isolators
 - Design for Bell Model 427: -40 dB transmissibility over 500-2000 Hz
- Le Hen et al. ^[40] included piezo actuator to add notches in spectrum
 - 30-41 dB extra reduction (70-81 dB passive + active)

37. Szefi et al. 2003 Proc. 44th Struct. Struct. Dyn. Mater. Conf.
38. Szefi et al. 2004 Proc. 45th Struct. Struct. Dyn. Mater. Conf.
39. Szefi et al. 2006 Proc. AHS 62nd Annual Forum

40. Le Hen et al. 2005 Proc. 46th Struct. Struct. Dyn. Mater. Conf. 41. Dylejko et al. 2014 J. Sound Vib. 333(10):2719-2734.

National Aeronautics and Space Administration

Review of noise & vibration control tech. for rotorcraft transmissions 16

- Introduction
- Noise and vibration control technologies
 - Mature technologies
 - Emerging technologies
- Observations, recommendations, and conclusions
- Disruptive trends in rotorcraft development

Select Observations & Recommendations

- Low-speed gear tones efficiently produce cabin noise (cabin treatment has low pass effect)
- Mature gear technologies are available, but not always used
- Considerable amount of work on active control recently
 - Full-scale testing needed to assess actuator requirements
 - FXLMS control algorithm is less effective than adaptive noise equalizer (ANE) control ^[46] for modulated tonal disturbances
- Nonlinear or negative stiffness concepts have not been explored
- Technologies should 1st integrate into military designs or be capable of retrofit
- Technologies exist to effectively attenuate rotor-induced tones
 - Gear noise concepts shouldn't amplify rotor tones or displace effective rotor noise concepts

46. Asnani et al. 2005 Noise Control Eng. J. 53(5):165-175.

Conclusions

Technology		Approx.	IL,	TRL	Mass/	Retrofit	Vary	Key challenge	
			freq., Hz	dB		Size		freq.	
Broad-band	S	Passive gear isolation	>500	3-7	3-6				temperature limits
		Bearing shunt damper	>100	7-18	4				design integration
		Periodic shaft	500-4k	0-40	4				shaft length
	Р	Elastomeric hard mount	>250	0-60	4-?				reliability
		Periodic fluid mount	500-3k	30-81	5				system-level data
	S	High CR spur gear	500-4k	2	9				n/a
		Superfinished gear	500-4k	4-7	8				n/a
		Helical gear	500-4k	2-17	9				added thrust load
nd		Magnetic gear	500-1.6k	?	4				specific torque
/-ba		Active gear	<1k	7.5	3-4				complex, force required
Narrow		Active transverse shaft	<4k	2-28	4				size, force required
		Active bearing	<1k	0-45	4				size, force required
	Р	Active strut	200-2.5k	11-20	7-?				reliability
		Active at mounting points	200-1.5k	8-18	7-?				force required
		Variable stiffness mount	<1k	?	3				unproven performance

IL: insertion loss, reduction in metric due to integration of a technology

TRL: technology readiness level (NASA [48])

48. https://esto.nasa.gov/files/trl_definitions.pdf

National Aeronautics and Space Administration

Disruptive Trends in Rotorcraft Development

Multi-speed and variable speed transmissions

- · Abrupt or smooth tonal shifts over wide band
- <u>Motivates:</u> maturation of variable frequency technologies

Composite gears and shafts

Electrification

- Early goal: composite gear body and hub
- <u>Motivates:</u> higher performance vib. control, tailored anisotropy, embedded treatment

Lewicki et al. 2015 NASA Report No. NASA/TM-2015-218816.
 Handschuh et al. 2014 NASA Report No. NASA/TM-2014-216646.

configurations and source locations

Motivates: understanding of the source

Significantly different powertrain

44. Sikorsky Firefly www.sikorsky.com 45. DARPA VTOL X-Plane www.darpa.mil

Review of noise & vibration control tech. for rotorcraft transmissions

Extra slides.....

Cabin Noise Measurements

Vehicle	Ref.		Max gross	B Peak,	Band/Tone,	Comment
			weight, kg	g dB	Hz	
Bell OH-58C	1987 ^[7]	Μ	1,451	85	573	Single tone measurement
Agusta A-109	1980 ^[4]	С	2,559	90	1000	
Westland Lynx	1980 ^[4]	Μ	3,291	98	500	Common powertrain
Westland WG30		С	5,806	94		Common powertram
Sikorsky S-76A	1986 ^[5]	U	4,587	105	1000	
Bell 212	1980 ^[4]	U	5,080	103	1000	
Aérospatiale Puma	1980 ^[4]	Μ	7,000	103	1000	
Sikorsky Sea King	1980 ^[4]	Μ	10,000	102	500	
Westland VIP Command	0	С	9,707	89		Common platform
Sikorsky S-61N		С	8,620	86		
Sikorsky CH-53A	1977 [3,6]	Μ	15,876	110	1000	CHRA was a CH-53A w/
NASA-Sikorsky CHRA		R	15,876	76		custom sealed cabin
Μ	: military,	U: ci	vil-utility,	C: civil,	R: civil-resea	Irch

• Maximum noise within 500 or 1000 Hz octave bands

- Military, utility (85-110 dB) louder than civil (86-94 dB)
- As gross weight increases...

Military get louder civil get quieter

Leverton et al. 1980 Proc. Symp. Internal Noise in Helicopters.
 Levine et al. 1977 NASA Report No. NASA-CR-145146.
 Yoerkie et al. 1986 NASA Report No. NASA-CR-172594.
 Coy et al. 1987 U.S. Army Report No. USAAVSCOM-TR-87-C-2.

Rotorcraft Gear Mesh Frequencies

Vehicle	Mesh frequencies, Hz		Vehicle	Mesh frequencies, Hz	
Aérospatiale	Spur 2-pair	_	Sikorsky	Spur 2-pair:	13325
- Puma	Helical 2-pin/1-gear:	~4550	- Sea King	Helical 2-pair:	5968
	Bevel pair:	~1750	- S-61N	Spiral-bevel:	1369
	Planetary stage 1:	~1600	Westland	Planetary:	683
	Planetary stage 2: ~550,	~1100	- VIP Commando		
Agusta	Combining stage	_	Sikorsky	Bevel 2-pair	_
- 109	Bevel pair:	1850	- UH-60 Blackhawk ^[9]	Bevel 2-pin/1-gear:	1628
	Planetary:	820		Planetary:	980
Westland	Combining stage	_	Sikorsky	Bevel pair:	2710
- Lynx	Spiral-bevel 2-pair:	~2150	- CH-53A	Planetary stage 1:	1370
- WG30	Conformal 2-pin/1-bull:	~450	NASA-Sikorsky	Planetary stage 2:	527
			- CHRA		
Sikorsky	Helical 2-pair	_	Bell	Spiral-bevel pair:	1919
- S-76A	Spiral-bevel 2-pair:	1221	- OH-58C	Planetary:	573
	2-Spur/1-bull:	727.5		-	

Peak cabin noise tone in bold

- Low-speed, final stage gearing has greatest impact on cabin noise
 - Peak noise in 7 out of 8 cases
 - Most harmonics in speech band
- 9. Yoerkie et al. 1985 U.S. Army Report No. USAAVRADCOM-TR-83-D-34.

Mature Technologies: Path Control

Anti-resonant isolators (rotor tones)

- Flannelly's ^[14] DAVI antiresonance using mechanically-amplified inertial force
 - Low mass, high static stiffness but low dynamic stiffness
- Many variants developed: Boeing's IRIS, MBB's ARIS, Eurocopter's SARIB, Lord's CBI
- Flight testing by Hooper et al. ^[15]: isolation of 40 dB at N/rev, >26 dB over N/rev \pm 5%
- Halwes et al. ^[16] introduced the LIVE hydraulic amplification (2x-10x higher) for compactness, lower mass
- Flight testing of 3.9 kg LIVE by Smith et al. ^[17]: 24 dB at N/rev, effective in transition
- Multiple adaptive and active LIVE variants
 - Smith et al.'s [18] "rigid" Smart Link

National Aeronautics and Space Administration