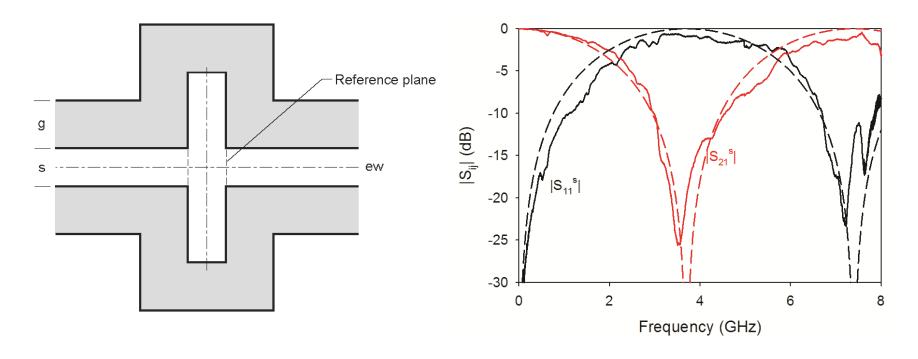


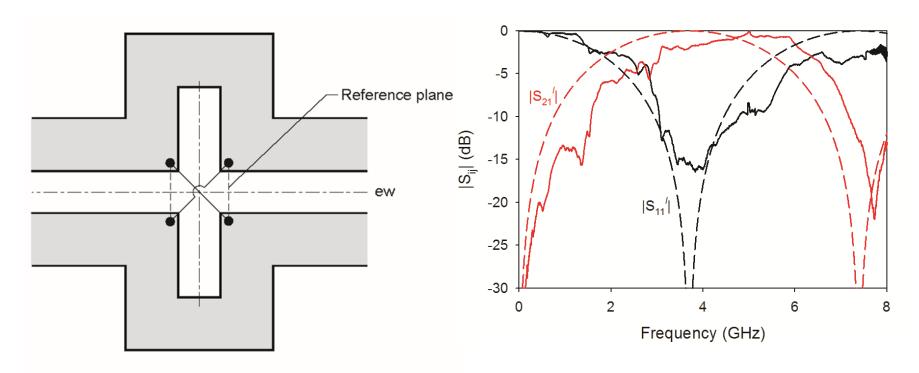
Effects of Parasitic Reactance on Lattice Circuit Slotline Switch

George E. Ponchak
NASA Glenn Research Center

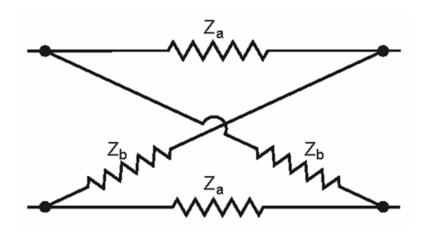


Introduction

- G. E. Ponchak, "Slotline switch based on a lattice circuit," IEEE Microw. and Wireless Compon. Lett., Vol 26, No. 1, Jan. 2016, pp. 43-45.
 - Reviewers asked me to consider the effects of parasitic reactances
 - In a three page paper, it was not possible
- This paper evaluates the Lattice Circuit Slotline Switch with diode parasitic reactances.
- The Lattice Circuit Slotline Switch is compared to a single shunt diode slotline switch.


Slotline Short Circuit Terminated Series Stub

A slotline short circuit terminated series stub acts as a series open circuit when the stub is $\lambda_g/4$ long, reflecting all power at that frequency.


Slotline Short Circuit Terminated Series Stub with Bridge Connection at the T-Junction

A slotline bridge connection at the T-junction short circuits the $\lambda_g/4$ stub and its equivalent open circuit, creating a perfect through line with a 180 degree phase change.

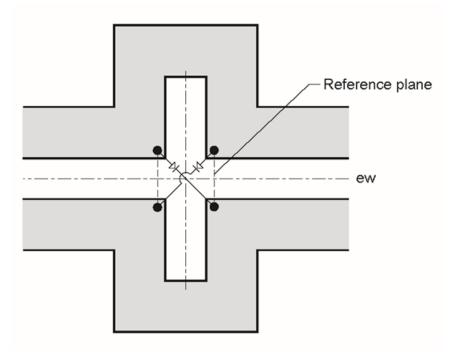
Lattice Circuit Schematic

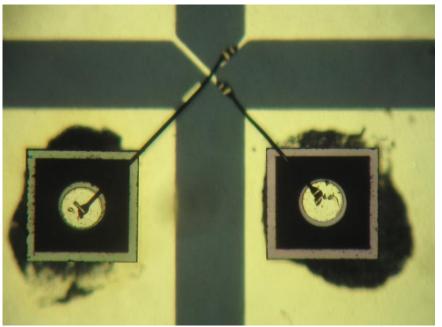
$$S_{11}^{s} = \frac{jtan(\beta l)}{1 + jtan(\beta l)}$$
 $S_{21}^{s} = \frac{1}{1 + jtan(\beta l)}$ $S_{11}^{l} = \frac{-1}{1 + jtan(\beta l)}$ $S_{21}^{l} = \frac{-jtan(\beta l)}{1 + jtan(\beta l)}$

The S-parameters of the Lattice Circuit if $Z_h = \infty$.

$$S_{11} = \frac{Z_a Z_b - Z_0^2}{Z_a Z_b + Z_0 (Z_a + Z_b) + Z_0^2}$$

$$S_{21} = \frac{(Z_b - Z_a)Z_0}{Z_a Z_b + Z_0 (Z_a + Z_b) + Z_0^2}$$


$$S_{11}^l = \frac{-1}{1 + jtan(\beta l)} \quad S_{21}^l = \frac{-jtan(\beta l)}{1 + jtan(\beta l)}$$


The S-parameters of the Lattice Circuit if $Z_b = 0$.

- θ = β I
- The above equations assume the diode is either a perfect short or open circuit; No parasitic reactances are considered.

Slotline Switch Based on a Lattice Circuit



- A pair of MACOM MA4P404-132 pin diodes across the T-junction comprise the switch.
- When the diodes are reverse biased, the switch is OFF.
- When the diodes are forward biased, the switch is ON.

Pin Diode Model

Reverse biased pin diode model

$$Z_r = R_r + j\omega L + \frac{1}{j\omega C} = R_r + jX_r$$

$$X_r = -(1 - \omega^2 LC)/\omega C = -1/\omega C_{eff}$$

Forward biased pin diode model

$$Z_f = R_f + j\omega L = R_f + jX_f$$

$$X_f = \omega L$$

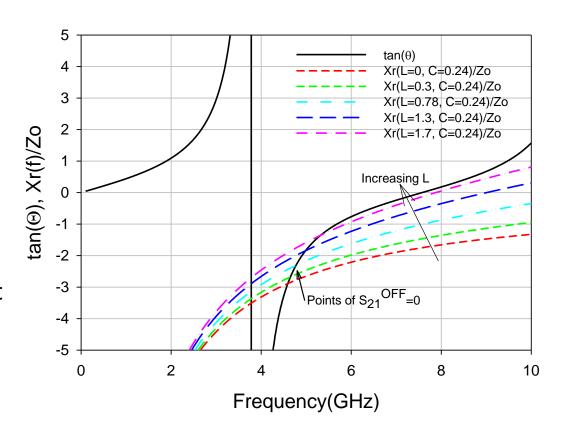
pin Diode Characterization

- The pin diode (MACOM MA4P404-132) was mounted on a 0.38 mm thick, alumina carrier for one port characterization
- The length of the bond wire from the probe pad to the diode contact was made similar to that used on the slotline, lattice circuit switch.
- A 150 μm pitch ground-signal-ground (GSG) probe was used and an Agilent PNA was calibrated to the probe tip using a GGB Industries calibration standard
- Measurements were made at the same bias conditions as used for the lattice circuit switches ($V_r=0\ V$, $I_r=0\ mA$, and $V_f=1.07\ V$, $I_f=37\ mA$) over the frequency range of 0.01 to 20 GHz.
- S-parameters were converted to Z-parameters.

pin Diode Circuit Element Values

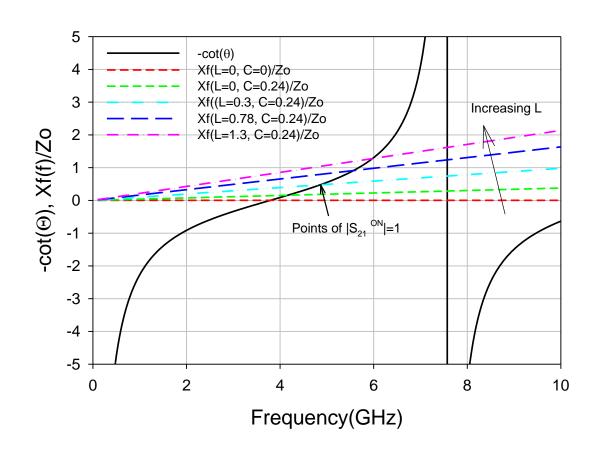
	$R_{\mathrm{f}}\left(\Omega ight)$	L(nH)	$R_{r}(\Omega)$	C(pF)
Reverse Bias		0.78	7.0	0.24
Forward Bias	1.3	0.78		

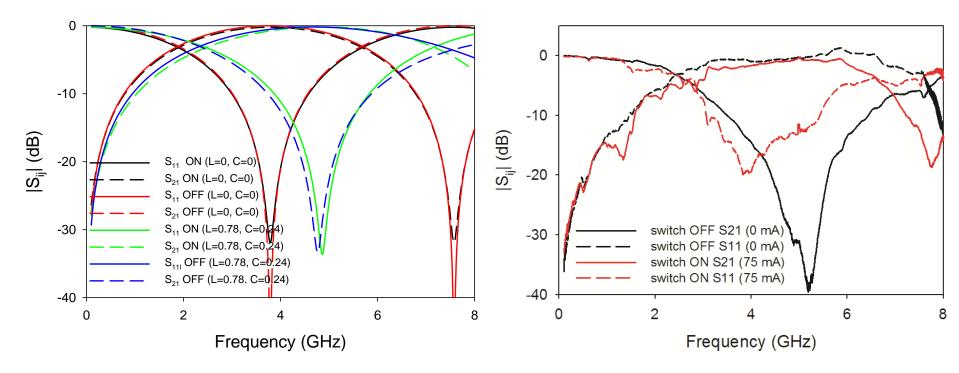
Since the resistances are small, they will be ignored in the analysis.


$$S_{11} = \frac{-(X_i \tan(\theta) + Z_o)}{[Z_o - X_i \tan(\theta)] + j[Z_o \tan(\theta) + X_i]} \qquad S_{21} = \frac{j(X_i - Z_o \tan(\theta))}{[Z_o - X_i \tan(\theta)] + j[Z_o \tan(\theta) + X_i]}$$

- For OFF state switch characteristics, $S_{21}=0$ if $X_r/Z_o=tan(\theta)$
- For ON state switch characteristics, $|S_{21}|=1$ and $S_{11}=0$ if $X_f/Z_o=-\cot(\theta)$

OFF State Requirements


- Diode parasitic reactances increase the frequency of perfect isolation.
- Increasing values of inductance increase the frequency of infinite isolation.
- There is only a frequency at which perfect isolation occurs between $\pi/2 \le \theta \le \pi$ if L ≤ 2 nH.


ON State Requirements

- Diode parasitic reactances increase the frequency of zero insertion loss.
- Increasing values of inductance increase the frequency of zero insertion loss.
- There is always a frequency between π/2≤θ≤π at which the insertion loss is zero.

Switch S-parameters with Reactances

Calculated S-parameters with and without the measured diodes reactances.

Measured S-parameters.

- Calculated OFF state parameters match the measured parameters well
- Calculated ON state parameters do not match well, probably due to an overestimate of L.

Optimal Switch Characteristics

Conditions for ideal switch characteristics, $S_{21}^{OFF}=0$ and $S_{21}^{ON}=1$

$$\tan(\theta) = \frac{\omega^2 LC - 1}{\omega CZ_o} \qquad \cot(\theta) = \frac{-\omega L}{Z_o}$$

Leading to:

$$L = \frac{1 \pm \sqrt{1 - 4\omega^2 C^2 Z_o^2}}{2\omega^2 C} \qquad \theta = tan^{-1} (\frac{-Z_o}{\omega L})$$

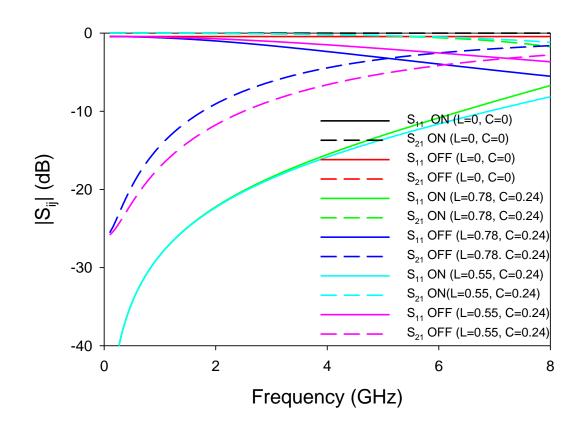
- If 2ω CZo<1 and $\pi/2<\theta<3\pi/4$, a value of L may be found to obtain ideal switch conditions.
- A solution may be found if ωC is small.

"TRADITIONAL" SLOTLINE SWITCH

- A single pin diode across the slot.
- If diode is reverse biased, the diode impedance is large and has no effect on signal. The switch is ON.
- If diode is forward biased, the diode impedance is small and reflects the signal. The switch is OFF.

S-parameters are:

$$S_{11} = \frac{-Z_o}{(2R_i + Z_o) + j2X_i}$$


$$S_{21} = \frac{2(R_i + jX_i)}{(2R_i + Z_o) + j2X_i}$$

Note that $S_{21}^{OFF}=0$ only if $R_f=X_f=0$

"TRADITIONAL" SLOTLINE SWITCH

- If L=C=0, ideal switch characteristics are achieved over all frequencies.
- If L=0.78 nH and C=0.24 pF, the switch operates well to 2 GHz.
- If L=0.55 nH and C=0.24 pF, the switch operates well to 3 GHz.
- Poor isolation due to forward biased diode reactances.

Conclusions

- The ideal Lattice Circuit Slotline Switch has infinite isolation and perfect impedance match at the design frequency at which the stub is $\lambda_g/4$.
- With parasitic diode reactances, infinite isolation and perfect impedance are possible.
- The newly described Lattice Circuit Slotline Switch has better performance than the "traditional," single diode slotline switch.
 - Note that the reactances of the single diode slotline switch can be minimized by a resonant circuit.