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Introduction

• Development and use of 3D 
icing simulation tools.

• Lack of ice accretion and 
aerodynamic data for large-
scale, swept wing 
geometries.

• Aerodynamic understanding 
important for evaluating 
efficacy of 3D icing 
simulation tools.

• Multi-faceted research effort 
called SUNSET II.
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Introduction

Aerodynamic understanding important for evaluating 
efficacy of 3D icing simulation tools.

• Low-Reynolds number (Re ≤ 2.4×106) aerodynamic test 
campaigns. 

• The artificial ice shapes were developed based upon a 
series of ice-accretion tests in the NASA Icing Research 
Tunnel.
− High fidelity and low fidelity

• Higher-Reynolds number (up to Re ≈ 12×106) 
aerodynamic test campaigns.
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Objectives and Approach

Objectives
• Perform experimental and computational assessment of clean-wing 

aerodynamics, model installation and simulation of small ice 
roughness.

Approach
• Perform aerodynamic testing with 8.9% scale semispan swept wing 

model of CRM65 at low-Reynolds number.
• Perform 3D RANS simulations of clean wing fully turbulent and with 

free transition.
• Parametric study of model-mounting configurations.
• Investigate techniques for simulating small ice roughness.
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Common Research Model (CRM)

• Commercial transport class 
configuration.

• Contemporary transonic supercritical 
wing design.

• Publically available and otherwise 
unrestricted for world-wide distribution.

• A 65% scale CRM was selected as 
the full-scale, reference swept-wing 
geometry for this research.

• CRM65 size airplane is comparable to 
Boeing 757.
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Experimental Methodology

• Aerodynamic testing performed at 
Wichita State University Beech Wind 
Tunnel.

• Test section size 7-ft x 10-ft.
• 8.9%-scale semispan model of 

CRM65 geometry.
• Reynolds numbers = 0.8, 1.6 and 

2.4×106

• Corresponding Mach numbers = 
0.09, 0.18 and 0.27.

• Measure integrated aerodynamic 
performance with force balance
− CL, CD, CM.

• Measure surface pressure - CP.
• Mini-tuft and surface-oil flow 

visualization.
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Model Mounting Configurations
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Model Mounting Configurations

• Effect of model mounting on aerodynamic performance at 
Re = 2.4×106, M = 0.27.
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Model Mounting Configurations

• Surface pressure distribution at y/b = 0.44, α = 13.2 deg.,  
Re = 2.4×106, M = 0.27.
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Clean Model Aerodynamics

• Effect of Reynolds and Mach number on clean wing configuration.
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Clean Model Aerodynamics

• Surface pressure distribution at Re = 1.6×106, M = 0.18.
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Clean Model Aerodynamics

• Mini-tuft and surface-oil flow visualization at α = 11.1 deg., and 
Re = 1.6×106, M = 0.18.
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Clean Model Aerodynamics

• Surface-pressure distribution and mini-tuft flow visualization at 
α = 13.6 deg., and Re = 1.6×106, M = 0.18.
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Clean Model Aerodynamics

• Surface-pressure distribution and mini-tuft flow visualization at 
α = 14.1 deg., and Re = 1.6×106, M = 0.18.
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Clean Model Aerodynamics

• Surface-pressure distribution animation at Re = 1.6×106, M = 0.18.
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CFD Simulation Methodology

• CFD simulation included the wing and 
splitter plate, no shroud.
− Test-section floor included as 

symmetry plane.
• Chimera overset grid based upon 

ONERA methodology.
− Wing: ~9.4×106 cells
− Splitter: ~6.5×106 cells
− Collar grid: ~0.65×106 cells

• ONERA elsA solver for 3D 
compressible RANS equations.

• One equation Spalart-Allmaras 
turbulence model.

• Free-transition model criteria based 
upon free-stream turbulence intensity 
of 0.11% (NT = 8) corresponding to 
WSU wind tunnel.



National Aeronautics and Space Administration

www.nasa.gov

CFD Simulation Comparison

• Clean wing performance at Re = 1.6×106, M = 0.18.
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CFD Simulation Comparison

• Surface oil flow visualization and transition location at α = 0 deg. 
and Re = 1.6×106, M = 0.18.
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CFD Simulation Comparison

• Surface pressure distribution at α = 13.1 deg. and Re = 1.6×106, 
M = 0.18.
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Roughness Simulation Methodology

• Full-span artificial ice shapes were bolted to the wing leading edge.
• Artificial ice shapes were made using rapid-prototype manufacturing 

(RPM).
• Small ice roughness was simulated with regular pattern of 

hemispheres in the RPM shape.
• Aerodynamic results were compared to carborundum grit of 

equivalent size applied to the clean leading edge.
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Roughness Simulation Comparison

• Aerodynamic performance at Re = 1.6×106, M = 0.18.
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Summary

• Experimental and computational study of 8.9% scale CRM65 
semispan wing at Re = 0.8, 1.6 and 2.4×106 and M = 0.09, 0.18 and 
0.27.

• Four different model mounting configurations were investigated.
– Circular splitter plate and streamlined shroud selected for further work.

• A detailed study of clean wing aerodynamics was performed:
– For all Re and M conditions, the flow over the outboard sections of the 

wing separated as the wing stalled with the inboard sections near the root 
maintaining attached flow.

– This behavior was captured for 3D RANS CFD simulations with free 
transition model, with opposite results for fully turbulent simulations.

• Artificial ice roughness simulated with hemispherical patterns in RPM 
shapes generated aerodynamic effects equivalent to similar size 
carborundum grit roughness.
– Size of RPM-based hemispherical roughness limited to height = 0.010 

inches due to manufacturing limitations.
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