

Low-Reynolds Number Aerodynamics of an 8.9% Scale Semispan Swept Wing for Assessment of Icing Effects

Andy Broeren NASA Glenn Research Center

Brian Woodard and Jeff Diebold University of Illinois at Urbana-Champaign

Frédéric Moens ONERA—The French Aerospace Lab

AIAA 9th ASE Conference

Denver, CO

www.nasa.gov 1

Outline

- Introduction
- Objectives and Approach
- Experimental Methodology
- Model Mounting Evaluation
- Clean Wing Aerodynamics
- CFD Simulation Comparison
- Ice Roughness Simulation Comparison
- Summary
- Acknowledgements

Introduction

- Development and use of 3D icing simulation tools.
- Lack of ice accretion and aerodynamic data for largescale, swept wing geometries.
- Aerodynamic understanding important for evaluating efficacy of 3D icing simulation tools.
- Multi-faceted research effort called SUNSET II.

Introduction

Aerodynamic understanding important for evaluating efficacy of 3D icing simulation tools.

- Low-Reynolds number (*Re* ≤ 2.4×10⁶) aerodynamic test campaigns.
- The artificial ice shapes were developed based upon a series of ice-accretion tests in the NASA Icing Research Tunnel.
 - High fidelity and low fidelity
- Higher-Reynolds number (up to Re ≈ 12×10⁶) aerodynamic test campaigns.

Objectives and Approach

Objectives

 Perform experimental and computational assessment of clean-wing aerodynamics, model installation and simulation of small ice roughness.

Approach

- Perform aerodynamic testing with 8.9% scale semispan swept wing model of CRM65 at low-Reynolds number.
- Perform 3D RANS simulations of clean wing fully turbulent and with free transition.
- Parametric study of model-mounting configurations.
- Investigate techniques for simulating small ice roughness.

Common Research Model (CRM)

- Commercial transport class configuration.
- Contemporary transonic supercritical wing design.
- Publically available and otherwise unrestricted for world-wide distribution.
- A 65% scale CRM was selected as the full-scale, reference swept-wing geometry for this research.
- CRM65 size airplane is comparable to Boeing 757.

Experimental Methodology

- Aerodynamic testing performed at Wichita State University Beech Wind Tunnel.
- Test section size 7-ft x 10-ft.
- 8.9%-scale semispan model of CRM65 geometry.
- Reynolds numbers = 0.8, 1.6 and 2.4×10^{6}
- Corresponding Mach numbers = 0.09, 0.18 and 0.27.
- Measure integrated aerodynamic performance with force balance

 $- C_L, C_D, C_M.$

- Measure surface pressure C_P .
- Mini-tuft and surface-oil flow visualization.

7

Model Mounting Configurations

Model Mounting Configurations

• Effect of model mounting on aerodynamic performance at $Re = 2.4 \times 10^6$, M = 0.27.

Model Mounting Configurations

• Surface pressure distribution at y/b = 0.44, $\alpha = 13.2$ deg., Re = 2.4×10⁶, M = 0.27.

• Effect of Reynolds and Mach number on clean wing configuration.

• Surface pressure distribution at $Re = 1.6 \times 10^6$, M = 0.18.

• Mini-tuft and surface-oil flow visualization at $\alpha = 11.1$ deg., and $Re = 1.6 \times 10^6$, M = 0.18.

• Surface-pressure distribution and mini-tuft flow visualization at $\alpha = 13.6$ deg., and $Re = 1.6 \times 10^6$, M = 0.18.

• Surface-pressure distribution and mini-tuft flow visualization at $\alpha = 14.1$ deg., and $Re = 1.6 \times 10^6$, M = 0.18.

• Surface-pressure distribution animation at $Re = 1.6 \times 10^6$, M = 0.18.

CFD Simulation Methodology

- CFD simulation included the wing and splitter plate, no shroud.
 - Test-section floor included as symmetry plane.
- Chimera overset grid based upon ONERA methodology.
 - Wing: ~9.4×10⁶ cells
 - Splitter: ~6.5×10⁶ cells
 - Collar grid: ~0.65×10⁶ cells
- ONERA elsA solver for 3D compressible RANS equations.
- One equation Spalart-Allmaras turbulence model.
- Free-transition model criteria based upon free-stream turbulence intensity of 0.11% (N_T = 8) corresponding to WSU wind tunnel.

CFD Simulation Comparison

• Clean wing performance at $Re = 1.6 \times 10^6$, M = 0.18.

CFD Simulation Comparison

• Surface oil flow visualization and transition location at $\alpha = 0$ deg. and $Re = 1.6 \times 10^6$, M = 0.18.

CFD Simulation Comparison

• Surface pressure distribution at $\alpha = 13.1$ deg. and $Re = 1.6 \times 10^6$, M = 0.18.

Roughness Simulation Methodology

- Full-span artificial ice shapes were bolted to the wing leading edge.
- Artificial ice shapes were made using rapid-prototype manufacturing (RPM).
- Small ice roughness was simulated with regular pattern of hemispheres in the RPM shape.
- Aerodynamic results were compared to carborundum grit of equivalent size applied to the clean leading edge.

Roughness Simulation Comparison

• Aerodynamic performance at $Re = 1.6 \times 10^6$, M = 0.18.

Summary

- Experimental and computational study of 8.9% scale CRM65 semispan wing at *Re* = 0.8, 1.6 and 2.4×10⁶ and *M* = 0.09, 0.18 and 0.27.
- Four different model mounting configurations were investigated.
 - Circular splitter plate and streamlined shroud selected for further work.
- A detailed study of clean wing aerodynamics was performed:
 - For all *Re* and *M* conditions, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow.
 - This behavior was captured for 3D RANS CFD simulations with free transition model, with opposite results for fully turbulent simulations.
- Artificial ice roughness simulated with hemispherical patterns in RPM shapes generated aerodynamic effects equivalent to similar size carborundum grit roughness.
 - Size of RPM-based hemispherical roughness limited to height = 0.010 inches due to manufacturing limitations.

Acknowledgements

Sponsor Organizations:

- NASA—Advanced Air Transport Technology Project
- FAA
- ONERA

Supporting Organizations:

- Boeing
- University of Illinois
- University of Virginia
- University of Washington

***Special thanks also to the WSU Beech Wind Tunnel staff and to William Yoshida at Univ. of Illinois for developing surface pressure contour plots.