

Compendium of Current Single Event Effects Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

Martha V. O'Bryan¹, Kenneth A. LaBel², Edward P. Wilcox¹, Dakai Chen³, Michael J. Campola², Megan C. Casey², Jean-Marie Lauenstein², Edward J. Wyrwas⁴, Steven M. Guertin⁵, Jonathan A. Pellish², and Melanie D. Berg¹

Martha O'Bryan

Abstract: We present the results of single event effects (SEE) testing and analysis investigating the effects of radiation on electronics. This paper is a summary of test results.

1. AS&D, Inc.; 2. NASA GSFC; 3. Analog Devices Inc. (formerly with NASA GSFC); 4. Lentech, Inc.; 5. JPL

Introduction

NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is challenging. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the

Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR) single-event burnout (SEB), and single-event transient (SET).

For total ionizing dose (TID) results, see a companion paper submitted to the 2017 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program" by A. D. Topper, et al.

bit errors were counted, generally by capturing with a

device, microprocessor, FPGA, or by comparing the

DUT output to an unirradiated reference device or with

an expected output (Golden chip or virtual Golden

chip methods). In some cases, the effects of clock

Results of such tests should be applied with caution

Static - the DUT was configured prior to

Biased - the DUT was biased and clocked while

power consumption was monitored for SEL or other

destructive effects. In most SEL tests, functionality

In SEE experiments, DUTs were monitored for soft

errors, such as SEUs, and for hard errors, such as

SEGR. Detailed descriptions of the types of errors

observed are noted in the individual test reports on

SET testing was performed using high-speed

due to their application-specific nature.

radhome.nasa.gov and nepp.nasa.gov.

Test Techniques and Setup

A. Test Facilities

through the DUT and the "effective LET" of the ion. Energies and LETs available varied slightly from one

Proton SEE tests were performed University of California at Davis (UCD) Crocker Nuclear Laboratory (CNL) using a 76" cyclotron (maximum energy of 63 MeV) [5] and Mass General Hospital (MGH) Francis H. Burr Proton Therapy.

Laser SEE tests were performed at the pulsed laser facility at the Naval Research Laboratory (NRL) We tested with a pulsed laser at the Naval Research (SPA) and Two-Photon Absorption (TPA) techniques with the laser light having a wavelength of 590 nm resulting in a skin depth (depth at which the light intensity decreased to 1/e - or about 37% - of its intensity at the surface) of 2 µm. A nominal pulse rate of 1 kHz was utilized. Pulse width was 1 ps, beam spot size ~1.2 µm.

Table I: LBNL Test Heavy Ions

lon	Energy (MeV)	Surface LET in Si (MeV•cm²/mg) (Normal Incidence)	Range in Si (µm)
	LBNL 10 N	NeV per amu tune	
¹⁸ O	183	2.2	226
²² Ne	216	3.5	175
⁴⁰ Ar	400	9.7	130
²³ V	508	14.6	113
⁶⁵ Cu	660	21.2	108
⁸⁴ Kr	906	30.2	113
¹⁰⁷ Ag	1039	48.2	90
¹²⁴ Xe	1233	58.8	90

Table II: TAMU Test Heavy Ions

lon	Energy (MeV)	Surface LET in Si (MeV•cm²/mg) (Normal Incidence)	Range in Si (µm)	
	TAMU 15 N	MeV per amu tune		
¹⁴ N	210	1.3	428	
²⁰ Ne	300	2.5	316	
⁴⁰ Ar	599	7.7	229	
⁶³ Cu	944	17.8	172	
⁸⁴ Kr	1259	25.4	170	
¹⁰⁹ Ag	1634	38.5	156	
¹²⁹ Xe	1934	47.3	156	
¹⁹⁷ Au	2954	80.2	155	
TAMU 25 MeV per amu tune				
⁸⁴ Kr	2081	19.8	332	
¹³⁹ Xe	3197	38.9	286	

amu = atomic mass unit

Test Results Overview

Table III. Abbreviations and conven-tions noted all LETs are in MeV ocm²/mg and a tests are performed to a fluence of 1x10 $1x10^{10}$ to $1x10^{11}$ p⁺/cm² σ per at a given

Table III: List of Principal

Principal Investigator (PI)	Abbreviation
Melanie D. Berg	MB
Megan C. Casey	MCC
Michael J. Campola	MJC
Dakai Chen	DC
Steve Guertin	SG
Jean-Marie Lauenstein	JML
Edward (Ted) P. Wilcox	TW
Edward Wyrwas	EW

Table IV: Abbreviations

oscilloscopes controlled via National Instruments	
LabVIEW®. Individual criteria for SETs are specific to	
·	
the device and application being tested.	
Heavy ion SEE sensitivity experiments include	
measurement of the linear energy transfer threshold	
(LET _{th}) and cross section at the maximum measured	
LET. The LET _{th} is defined as the maximum LET value	
at which no "effect was observed at an effective	
fluence of 1×10 ⁷ particles/cm ² . In the case where	
events are observed at the smallest LET tested, LET _{th}	
will either be reported as less than the lowest	
·	
measured LET or determined approximately as the	
LET _{th} parameter from a Weibull fit. In the case of	
SEGR and SEB experiments, measurements are	
made of the SEGR or SEB threshold V _{DS} (drain-to-	
source voltage) as a function of LET and ion energy at	
3 ,	
a fixed V _{GS} (gate-to-source voltage).	
2) SEE Tooting Broton	
2) SEE Testing - Proton:	
Proton SEE tests were performed in a manner	
similar to heavy ion exposures. However, hecause	

calibrated energy meter.

Proton SEE tests were performed in a manner
similar to heavy ion exposures. However, because
protons usually cause SEE via indirect ionization of
recoil particles, results are parameterized in terms of
proton energy rather than LET. Because such proton-
induced nuclear interactions are rare, proton tests also
feature higher cumulative fluences and particle flux
rates than heavy ion experiments.
, ,

3) SEE Testing - Pulsed Laser Facility Testing:

The DUT was mounted on an X-Y-Z stage in front approximately 1 µm at full-width half-maximum (FWHM). The X-Y-Z stage can be moved in steps of 0.1 µm for accurate determination of SEE-sensitive together with a charge-coupled device (CCD) camera and monitor, were used to image the area of interest thereby facilitating accurate positioning of the device in the beam. The pulse energy was varied in a continuous manner using a polarizer/half-waveplate combination and the energy was monitored by splitting off a portion of the beam and directing it at a

Principal Investigator (PI)	Abbreviation
Melanie D. Berg	MB
Megan C. Casey	MCC
Michael J. Campola	MJC
Dakai Chen	DC
Steve Guertin	SG
Jean-Marie Lauenstein	JML
Edward (Ted) P. Wilcox	TW
Edward Wyrwas	EW

and Conventions

LET = linear energy transfer (MeV•cm²/mg)

:
LET _{th} = linear energy transfer threshold (the
maximum LET value at which no effect
was observed at an effective fluence of
1x10 ⁷ particles/cm ² – in MeV•cm ² /mg)
LET _{SiC} = LET for SiC
< = SEE observed at lowest tested LET
> = no SEE observed at highest tested LET
σ = cross section (cm ² /device, unless specified
as cm ² /bit)
σ_{maxm} = cross section at maximum measured
LET (cm ² /device, unless specified as
cm ² /bit)
ADC = analog-to-digital converter
Codec = codec/decodec
CMOS = complementary metal oxide
semiconductor
DDR = double data rate
DUT = device under test
ECC = error correcting code
Effective LET = the ion LET divided by the
cosine of the angle of incidence
H = heavy ion test
ID# = identification number
I _d = drain-source
I _{dss} = drain-source leakage current
I _{ou} t = output current
L = laser test
LBNL = Lawrence Berkeley National Laboratory
LDC = lot date code
I PP = low power plus

MLC = multi-level cell

PI = principal investigator

SBU = single-bit upset

SEB = single event burnout

SEE = single event effect

_{GS} = gate-source voltage

'th = gate threshold voltage

NRL = Naval Research Laboratory

REAG = radiation effects and analysis group

SEGR = single event gate rupture SEL = single event latchup SET = single event transient SEU = single event upset TAMU = Texas A&M University Cyclotron _{DS} = drain-source voltage

Table V: Summary of SEE Test Results

Part Number	Manufacturer	LDC or Wafer#, (REAG ID#)	Device Function	Technology	Particle: (Facility/Year/Month) P.I.	Test Results: LET in MeV•cm²/mg, σ in cm²/device, unless otherwise specified	Supply Voltage	Sample Size (Number Tested)
Power Devices:	International Postifier	1445,	MOSEET	Tropoh	H. // PNII 2016Nov.) IMI	1039-MeV Ag (LET=48): SEB, SEGR. Last pass/first fail V _{DS} : 18/20V at 0, -1 V _{GS} ;	$V_{GS} = 0V \text{ to}$	12
IRHLF87Y20	International Rectifier	(15-001)	MOSFET	Trench	H: (LBNL2016Nov) JML H: (TAMU 2016Sep) MCC;	16/18V at -2 V _{GS} ; 14/16V at -3 V _{GS} . 548 MeV & 400 MeV Ar (LET=14&9.7): Dose effects at all biases. Modal last	-3V in 1V steps	12
Si7414DN	Vishay	n/a (16-030)	MOSFET	TrenchFET	P: (MGH 2016Oct) MCC; H: (LBNL 2016Nov) JML, MCC	pass/first fail V_{DS} =42/45V; failures as low as 30/33V. 283 MeV Ne (LET=2.7): 42/45V. 659 MeV Cu (LET=21): V_{th} and I_{DSS} degradation at 0 V_{DS}	0 V _{GS}	15
SQL431EP	Vishay	n/a (16-025)	MOSFET	TrenchFET	H: (TAMU 2016Sept) MCC	548 MeV Ar (LET=14): Pass at max rated V _{DS} = -200V. No dose effects.	0 V _{GS}	2
SMHF2812D	Crane Interpoint	1021 and 1214 (14-021)	DC/DC Converter	Hybrid	H: (TAMU 2016July) MCC	Destructive SEE observed in older LDC when biased at 35 V and 188 mA load on each output with 2127 MeV Au (LET = 86 MeV•cm²/mg). [15]	28V, 35V	6
CPM2-1200-0025B	CREE/Wolfspeed	1327, (13-069); FM113-16, (15-067)	MOSFET	SiC Gen 2 VDMOS	H: (TAMU_2016Apr) JML	466 MeV Ar (LET _{SiC} = 9.3): At 0 V _{GS} , onset V _{DS} for latent gate degradation as a function of angle of incidence followed the cosine rule. Onset at 0° : 375 V. 566 MeV Cu (LET _{SiC} = 24): At 0 V _{GS} , onset V _{DS} for gate-drain degradation = 200 V.	0 V _{GS}	3
Engineering Samples	GE	(16-042)	MOSFET	SiC	H: (TAMU 2016Sept) JML	Contact PI for information.	Various	Various
SOC/Processor/FPGA Device		n/a	200	20nm CMOS	D. (MCU204CO++) F\M	CELL 7 C 22:40:8 cm² at 200 Ma\/ protect [4.0]	40.1/	1
Jetson TX1	nVidia	(16-038)	SOC	20nm CMOS	P: (MGH2016Oct) EW	SEU σ ~6.22x10 ⁻⁸ cm ² at 200 MeV proton. [16] H: SOC (DDR4 not tested)	19 V	1
Snapdragon 820	Samsung	n/a	SOC + DDR4	14nm LPP	H: (TAMU2016Sept) SG; P: (MGH2016Oct) SG	SEFI LET _{th} ~ 1; $\sigma_{maxm} 3x10^{-4}cm^2$ (at LET=15): P: tested at 200 MeV: stuck bits at 1x10 ⁻¹⁷ cm ² /bit; SEFIs observed at 1x10 ⁻⁹ cm ² [17]	Defined by device board	4
RT4G150-CB1657	Microsemi	1548, 1629 (16-003, 16-032)	FPGA	65nm CMOS	H: (LBNL 2016Sept) (TAMU 2016Oct-Nov) (LBNL 2016Oct) MB	1 <seu let<sub="">th <1.8 [Berg-RT4G-TR] [18] [19] [20] [21]</seu>	nominal	5
XC7K325T-1FBG900 K7 Ultrascale	Xilinx	1509 (15-061)	FPGA	FPGA (20nm planar; 16nm Finfet vertical)	H: (TAMU 2016Oct-Nov) MB	SEU LET _{th} <0.07; SEL LET _{th} <8 [19] [20] [22] [23]	nominal	2
Memory Devices: H27QDG822C8R-BCG	Hynix	608A (16-010)	3D NAND Flash	ONO Charge-trap and CMOS	H: (LBNL2016Aug) DC/TW	MLC-mode SEU: LET $_{th}$ < 0.9 MLC-mode SEU: σ_{maxm} = 1x10 $^{-10}$ cm 2 /bit (For checkerboard pattern to fluence of 1x10 6 /cm 2 . Pattern and fluence dependencies exist [24].) SLC-mode SEU: 0.9 < LET $_{th}$ < 3.5 SLC-mode SEU: σ_{maxm} = 5x10 $^{-11}$ cm 2 /bit SEFI: 0.9 < LET $_{th}$ < 3.5 Permanent Failure of Erase Circuitry: 31 < LET $_{th}$ < 35 SEL LET $_{th}$ > 85	1.8 V	3
IMMX64M64D3DUS8AG- E125	Intelligent Memory	n/a (14-063)	DDR3	Bit-twinned ECC Memory	H: (TAMU 2016July; TAMU 2016Oct-Nov) MCC	SEFI LET _{th} < 1.8 MeV•cm²/mg (σ ~ 2×10 ⁻⁶ cm ⁻²). SET LET _{th} and σ could not be found due to on-chip ECC. No destructive SEEs at maximum tested LET = 20.6 MeV•cm²/mg.	1.5 V	1
IMME128M64D3DUS8AG- E125	Intelligent Memory	n/a (14-064)	DDR3	ECC Memory	H: (TAMU 2016July) MCC	SEFI LET _{th} < 1.8 MeV•cm²/mg ($\sigma \sim 3 \times 10^{-7}$ cm ⁻²). SET LET _{th} and σ could not be found due to on-chip ECC. No destructive SEEs at maximum tested LET = 21 MeV•cm²/mg.	1.5 V	1
HM628128	Hitachi	9249 (15-082)	SRAM	0.8um CMOS	P: (MGH 2016Oct) MCC	SEU σ ~1x10 ⁻⁷ cm ² with 200 MeV proton.	5 V	1
inear Devices:						SEL LET _{th} > 86;		
AD9257	Analog Devices	1450 (16-023)	ADC	180 nm CMOS	H: (LBNL2016July; 2016Aug) DC	SEU LET _{th} < 3.5; SET LET _{th} <2.5; 1.8 < SEFI LET _{th} < 3.5 [25]	1.8 V _{pp}	3
LTC6268-10	Linear Technology	1433 (16-040)	Operational Amplifier	BiCMOS	H: (TAMU2016July; LBNL2016July) DC	SEL LET _{th} > 86; SET σ_{maxm} = 1.5x10 ⁻³ cm ² ; Two types of SET were observed: SETs with a short duration on the order of microseconds, and SETs with long duration on the order of milliseconds. The majority of SETs have duration less than 7 µsec.[26]	2.5 V	7
LTC6103	Linear Technology	n/a (16-031)	Current Sense Amplifier	linear bipolar	H: (LBNL2016Aug) MJC	$ \begin{array}{l} \text{SEL LET}_{\text{th}} > 86; \\ \text{SET LET}_{\text{th}} < 3.5; \\ \text{SET } \sigma_{\text{maxm}} \sim 5 \text{x} 10^{-4} \text{ cm}^2 \\ \text{Positive and negative going transients independent of input voltage.} \end{array} $	4 to 60V in 14V incre-ments	4
Diodes:								
JANTX1N6843CCU3	Microsemi	1233 (16-006)	Diode	Si	H: (TAMU 2016March19) MCC	No failures or degradation observed at 100% of reverse voltage when irradiated up to 729 MeV Cu (LET = 20 MeV•cm²/mg). Degradation observed during beam run while biased beginning at 85% of reverse voltage, but all parameters remained within specification when irradiated with 1170 MeV Ag (LET = 44 MeV•cm²/mg). Degradation was also observed during beam run when biased at 95% of reverse voltage and irradiated with 1470 MeV Pr (LET = 60 MeV•cm²/mg), but parameters exceeded specification. Degradation and exceeded specification limits were also observed when biased at 65% of reverse voltage and irradiated with 1858 MeV Ta (LET = 79 MeV•cm²/mg).	100V	3
JANS1N6843CCU3	International Rectifier	1217 (16-006)	Diode	Si	H: (TAMU 2016March) MCC	No failures or degradation observed at 100% of reverse voltage when irradiated up to 1470 MeV Pr (LET = 60 MeV•cm²/mg). Catastrophic failure was observed at 95% of reverse voltage when irradiated with 1858 MeV Ta (LET = 79 MeV-cm²/mg). [24]	100V	4
SBRT10U60D1	Diodes, Inc.	1523 (16-043)	Diode	Si	H: (LBNL 2016Nov) MCC	No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 59 MeV•cm²/mg). Catastrophic failure was observed at 75% of reverse voltage.	60V	3
SBR1045D1	Diodes, Inc.	1034 (16-044)	Diode	Si	H: (LBNL 2016Nov) MCC	No failures observed at 75% of reverse voltage when irradiated with 1233 MeV Xe (LET = 59 MeV•cm²/mg). Catastrophic failure was observed at 100% of reverse voltage.	45V	3
SBR160S23	Diodes, Inc.	A8 (16-045)	Diode	Si	H: (LBNL 2016Nov) MCC	No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 59 MeV•cm²/mg).	60V	3
BZX84-A75	NXP Semiconductor	31 (16-046)	Diode	Si	H: (LBNL 2016Nov) MCC	No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 59 MeV•cm²/mg).	75V	3
BZX84C75	ON Semiconductor	N (16-047)	Diode	Si	H: (LBNL 2016Nov) MCC	No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 59 MeV•cm²/mg).	75V	3
HSMP-3810	Broadcom	U (16-048)	Diode	Si	H: (LBNL 2016Nov) MCC	No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 59 MeV•cm²/mg).	100V	3
BAS21-7-F	Diodes, Inc.	D4 (16-049)	Diode	Si	H: (LBNL 2016Nov) MCC	Degradation observed during beam run while biased at 100% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET	200V	3
liscellaneous Devices:		(.0 040)				= 59 MeV•cm²/mg).		
ADV212	Analog Devices	1216 (13-051); 1220 (13-053)	Video Codec	180nm CMOS	H: (TAMU 2016Sept) TW	SEL LET _{th} < 1.3; SEFI LET _{th} < 1.3; $43 < Permanent Failure LET_{th} < 52 [28]$	Core: 1.5V I/O: 2.5V	3
KSW-2-46+	Mini-Circuits	1643 (17-004)	RF Switch	GaAs	L: (NRL 2017Feb) MCC	Worst case transients were ~1 V in amplitude and ~10 ns in duration. Transients did not result in changed states. No destructive events were observed.	-5V	2
						Worst case transients were ~200 mV in amplitude and several µs in duration or		

As in our past workshop compendia of NASA Goddard Space Flight Center (GSFC) test results, each DUT has a detailed test report available online at http://radhome.gsfc.nasa.gov describing the test method, SEE conditions/parameters, test results, and graphs of data. The Test Results and Discussion section contains summaries of testing performed on a selection of featured parts.

LTC6268-10 Linear Technology Operational Amplifier

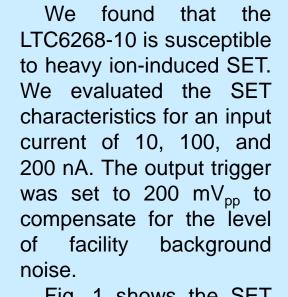


Fig. 1 shows the SET LET for various input currents. Fig. 2 shows a The figure shows that the

SETs can be generally categories: 1) SETs with a duration on the order of less than 7 µsec. Fig. 3 shows an example of a worst case SET.

Fig. 4 shows a column bar chart of the SET count for small and large events at input currents of 10, 100, and 200 nA. The

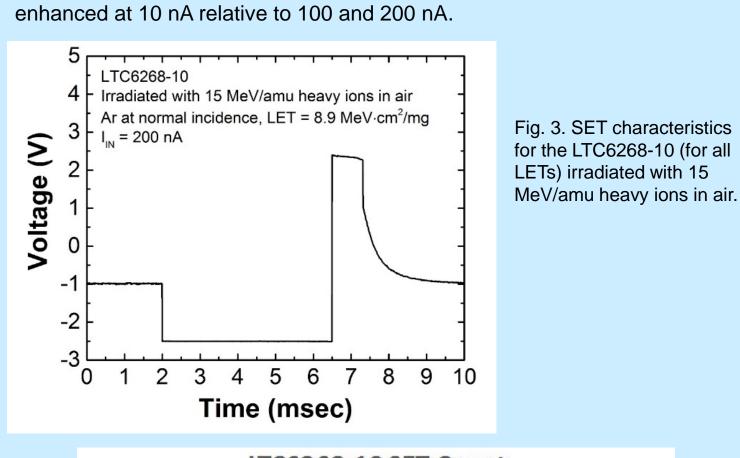
Fig. 2. SET amplitude vs. width plot (for all LETs) for the LTC6268-10 irradiated with 15 MeV/amu heavy increases with decreasing input current for both

small and large events. Furthermore, the number of small events increases significantly with decreasing input current. The SET count for small events is significantly higher at 10 nA input current, and the proportion of small to large events is

Irradiated with 15 MeV/amu heavy ions in air

LET (MeV·cm²/mg)

Fig. 1. SET cross section vs. effective LET for the

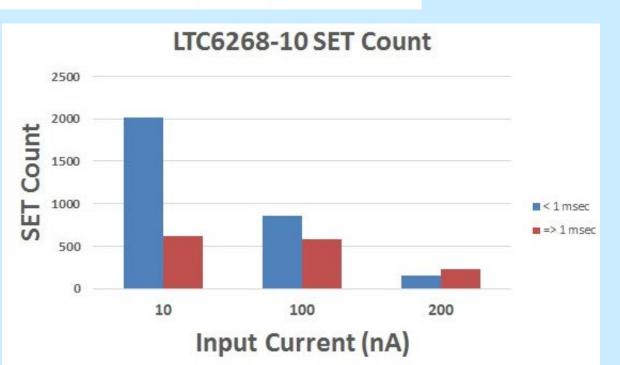

Irradiated with 15 MeV/amu heavy ions in air

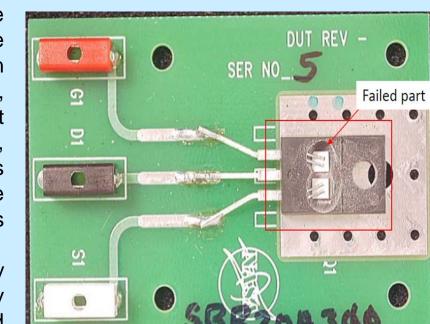
 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

Width (sec)

LTC6268-10 irradiated with 15 MeV/amu heavy

 $V_{CC} = \pm 2.5 \text{ V}, I_{IN} = 10 \text{ to } 200 \text{ nA},$




Fig. 4. SET count vs. input current for the LTC6268-10 irradiated with 15 MeV/amu heavy ions in air. The SETs are divided into two categories with respect to its duration: < 1 msec, and ≥ 1 msec. Data represents all LETs tested (Ne, Ar, Kr, and Au). The proportion of large and small SETs showed no clear dependence on LET.

Test Results and Discussion

Diode Failure Summary

In the 2016 "Compendium of Single Event Effects Results from NASA Goddard Space Flight Center," presented the top-level results of the SEE testing of a variety of diodes. One of the diodes discussed was the Diodes, Inc. SBR20A300, which is a dual 300-V, 20-A super barrier diode. A decapsulated DUT is shown in Fig. 5 mounted on a daughtercard. Five of the SBR20A300s were irradiated at LBNL with 1233-MeV Xe, 225 V or 300 V (the parts were only biased at increments of 25% of the rated reverse voltage.) However, when biased at 50% of the rated reverse voltage, 150 V, only charge collection was observed. Fig. 6 shows

The beam shutter was opened (beam was turned on) at time 0 s, and charge collection was immediately observed in any of these parameters. The reverse voltage on the same DUT was then increased by 25% to suddenly the current increases to the point where the anode and the cathode are shorted and the amount of reverse current is limited by the compliance settings on the power supply. This is shown in Fig. 7. When the

SBR20A300 is reverse biased at 225 V (75% of the rated reverse voltage), almost immediately after the beam is turned on at time 0s, the part begins to experience damage and the reverse current increases by 10s of nA. Less than 1s later, the part experiences catastrophic failure and the anode and

After the beam run is over, there were significant shifts in the electrical parameters Fig. 8 shows the reverse current as a function of the reverse 300 V. After the SBR20A300 is irradiated while biased at 150 V there is effectively no change in the reverse current as a function of reverse voltage when at 225 V (75% of the rated reverse voltage), the specification for reverse current (maximum of 100 µA) was exceeded before the reverse voltage reached

After returning to Goddard, several of these parts were taken to the Parts Analysis Lab (Code 562) for failure analysis. Two locations on the SBR20A300 show elevated temperatures when a small bias is applied and the DUT is photographed using an infrared camera. These elevated temperatures are due to high currents created by shorts between the anode and cathode that were created after irradiation with heavy ions

The parts were photographed with a thermal infrared camera with a small reverse bias applied (Fig. 9.) The bright white spot in the upper left corner of the die along the guard ring was quickly determined to be a failure location, and a second darker spot about halfway down the left side along the guard ring was also identified, shown in the upper left corner of the thermal image in Fig. 9, this photograph taken with a camera. These locations were photographed with a high-magnitude optical microscope and these images can be seen in Figs. 10 and 11. Only the brighter, upper corner failure location will be discussed in this work. The DUT was then cross-sectioned at the location of the failure. Fig. 12 shows the location of the failure in cross-section. A large void is visible, as are cracks due to stress from the excessive that resulted from the heavy ion strike. There is also a large mound directly below the void that was created after the silicon melted and then reformed. A large void is observed from the displacement of molten silicon, as is a large moundshaped region directly below the void. In addition, cracks are observed due to stress from the excess heat created by the heavy ion as it passed through

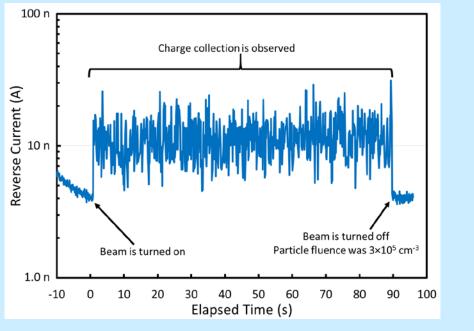
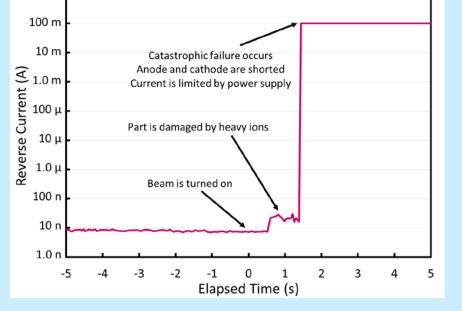


Fig 9. SBR20A300 photographed using

Summary


data be used with caution. We also

highly recommend that lot testing be

performed on any suspect or

an infrared camera.

commercial device.

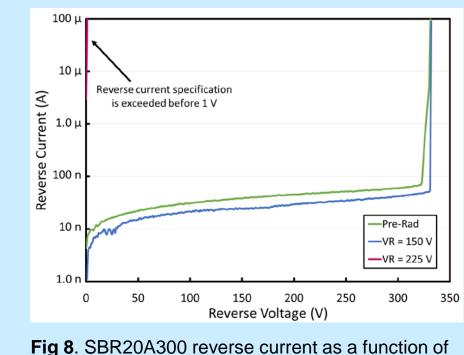


Fig 7. SBR20A300 is reverse current, catastrophic failure.

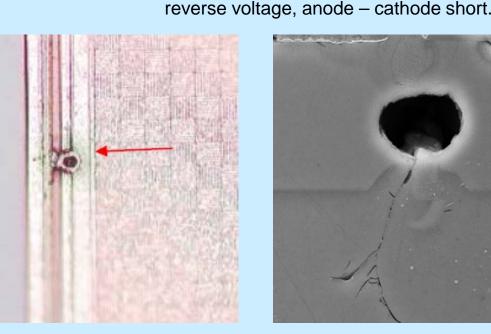


Fig 10. SBR20A300 failure location 1

Fig 11. SBR20A300 failure location 2. **Fig 12.** Cross sectioned view of failure.

Acknowledgment

This work was supported in part by the NASA Electronic Parts and Packaging (NEPP) Program, NASA Space Technology Mission Directorate Game Changing Technology Division, and NASA Flight Projects. The authors gratefully acknowledge members of the Radiation Effects and Analysis Group who contributed to the test results presented here: Hak Kim, Anthony M. Phan, Donna J. Cochran, James D. Forney, Christina M. Seidleck, and Stephen R. Cox.

Special thanks go to Stephen P. Buchner and Dale McMorrow, Naval Research Laboratory for their excellent support of the laser testing