The Sun and the Eclipse Across America August 21, 2017

Mitzi Adams, Solar Scientist ST13, NASA/MSFC

Image Courtesy of Dr. Alphonse Sterling, NASA/MSFC August 1, 2008 Gansu Province, China

What is an Eclipse?

An eclipse happens when one object blocks the light of another

Images Used With Permission

Eclipse Across America

Close to Hopkinsville, Kentucky (GE):		
Start of partial eclipse	16:56 UT	11:56 a.m. CD
Start of totality	18:24 UT	1:24 p.m. CD
Maximum eclipse	18:25 UT	1:25 p.m. CD
End of totality	18:26 UT	1:26 p.m. CD
End of partial eclipse	19:51 UT	2:51 p.m. CD

What To Expect

What You Can See: Shadow Bands

Light shines through air, creating a wavy pattern similar to light through water in a pool

What You Can See: Diamond Ring and Bailey's Beads

What You Can See: The Corona and Prominences

Rob Lucas, with Jay Pasachoff's 2013 Eclipse Expedition Image Used With Permission

What You Can See: The Sky During Totality

Jupiter is to the east of the Meridian (left), Mercury, Mars, and Venus to the west.

Eclipse Across America...in Tennessee and Kentucky

Hopkinsville, Kentucky, Greatest Eclipse: Dr. Renee Weber Dr. Jesse Dimech (Planetary Scientist, postdoc) APSU Clarksville:Guthrie, Kentucky:Mitzi AdamsDr. Dennis GallagherLinda Rawlins (retired)Dr. Pete Robertson (Atmospheric Scientist, retired)Dr. Stephanie Wingo (Atmospheric Scientist, postdoc)

Cookeville, Tennessee: Dr. Amy Winebarger

Adams, Tennessee: Dr. Jim Spann

Eclipse Science

Ionospheric Changes

At night (on right), ions recombine, ionosphere has only F and E layers, transmitted radio signals travel higher before bouncing, so can be received at larger distances.

The INSPIRE Project provides creative hands-on opportunities for students of all ages to observe Very Low Frequency waves (i.e. lightning and other atmospheric sounds) by using the INSPIRE VLF-3 Natural Radio Sound Receiver.

INTERACTIVE NASA SPACE PHYSICS IONOSPHERE RADIO EXPERIMENTS

WAV File!

Weather Observations

Sounding Equipment

Standardized Eclipse Observations

Citizen Continental-America Telescopic Eclipse Experiment (CATE): https://sites.google.com/site/citizencateexperiment/home/

Prominences

Solar Dynamics Observatory (SDO) Extreme Ultraviolet Image

Coronal/Chromospheric Observations

Ground-based observatories see up to about 1.3 times the radius of the Sun.

March 2006

Space-based telescopes see from about 2.2. to 30 times the solar radius.