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ABSTRACT 

The GOES-R Flight Project has developed an Image 

Navigation and Registration (INR) Performance Assessment 

Tool Set (IPATS) for measuring Advanced Baseline Imager 

(ABI) and Geostationary Lightning Mapper (GLM) INR 

performance metrics in the post-launch period for 

performance evaluation and long term monitoring. IPATS 

utilizes a modular algorithmic design to allow user selection 

of data processing sequences optimized for generation of 

each INR metric. This novel modular approach minimizes 

duplication of common processing elements, thereby 

maximizing code efficiency and speed. Fast processing is 

essential given the large number of sub-image registrations 

required to generate INR metrics for the many images 

produced over a 24 hour evaluation period. This paper 

describes the software design and implementation of IPATS 

and provides preliminary test results. 

Index Terms—Image registration, Image Navigation, 

Software Design, Automation 

1. INTRODUCTION 

The Image Navigation and Registration (INR) Performance 

Assessment Tool Set (IPATS) was developed to measure INR 

performance metrics of the Advanced Baseline Imager (ABI) 

and Geostationary Lightning Mapper (GLM), onboard 

GOES-R, in both the post-launch period for performance 

evaluation and for long term monitoring. IPATS utilizes a 

modular algorithmic design to allow user selection of data 

processing sequences optimized for generation of each INR 

metric. 

The evaluation tool component of the entire IPATS toolset 

consists of two main software applications: The Image Pair 

Selector and Evaluator (IPSE) and the Output Data Analysis 

Tool (ODAT). 

Given one or more ABI or GLM Background Images to 

be evaluated, IPSE identifies other images against which each 

newly received image should be evaluated. Those other 

images can come from within that input image set, from 

within a database of previously received ABI or GLM 

Background images, or from within a database of truth 

images derived from Landsat data. It then identifies 

appropriate chips within the overlapping geographic region 

of that image pair to evaluate. The navigation and registration 

results for each individual evaluation region for each image 

pair, in terms of correlation error and measurement 

uncertainty, are then stored in either a SQLite3[3] or 

PostgreSQL[4] database for further analysis. The prime focus 

of IPSE is performing the core analysis on each individual 

image pair at sufficient speed to keep up with data collection 

(process a day’s data within a day) using limited computing 

hardware. IPSE is a C++ command line application with both 

standalone and client/server components. To perform some 

of the image processing, IPSE uses the open source OpenCV 

toolkit[2] to manage image data and perform many but not all 

image processing operations. 

ODAT, an analyst focused, graphical user interface-based 

Python application[5], allows each analyst to query the 

database generated by IPSE for specific portions of the 

analyzed imagery (e.g., navigation error for all Band 2 images 

collected on a specific day, or all frame-to-frame registration 

error output for all Band 3 images collected over the previous 

week). ODAT then allows the user to export raw analysis 

results, generate additional statistics across multiple analysis 

results, generate plots of the results, and rerun specific 

evaluates through IPSE using debug modes or using alternate 

evaluation parameters. 

2. THE IMAGE PAIR SELECTOR AND 

EVALUATOR OVERVIEW 

The Image Pair Selector and Evaluator (IPSE) performs the 

bulk of the scientific analysis in the IPATS toolset. Within 

IPSE, data analysis is divided into three main components. 

Image pair identification, evaluation location identification, 

and then finally the actual scientific evaluation. 

2.1. Image pair identification 

First, for each specific analysis type (e.g., navigation, band-

to-band registration), IPSE examines metadata for the input 

imagery and identifies which images are to be compared 

against which other images. The rules for image pair 

identification vary from evaluation to evaluation. 

Navigation evaluation is performed on every single input 

ABI and GLM Background image received. For the ABI 

images, the input image is compared against a set of truth 

chips, derived from Landsat data, and the image pair 



identification step is skipped. For GLM Background image 

navigation, each GLM image is compared with the single 

previous and single next collected ABI image from a single 

configurable band. 

For band-to-band registration (BBR), IPSE identifies all 

of the available images from a single collection, grouping 

images into collections by the start time in the file name. The 

specific pairs of bands that are to be compared is a 

configurable parameter. 

Frame-to-frame registration (FFR) pair identification is 

performed by finding the previously collected matching ABI 

image (same band, same satellite position, same type, etc.). 

Swath-to-swath registration (SSR) pair identification is 

the most complicated, because from an official requirements 

perspective, swath-to-swath registration evaluation is 

performed on specifically tasked collection. In order to 

provide automation for SSR, IPSE looks for two Mesoscale 

images from the same band and same satellite position, and 

that were collected approximately 30 seconds apart. IPSE 

then loads the geographic metadata from the image files in 

order to determine the covered ground area in GOES-R fixed 

grid angular coordinates. If the images overlap by 

approximately one swath, then SSR evaluation is performed 

on that image pair. 

2.2. Evaluation location identification 

Once an image pair is identified, it then identifies specific 

chips of the whole image on which to perform the evaluation. 

Given the computational cost of performing a cross-

correlation operation and the likelihood that navigation and 

registration error varies across the image (particularly for the 

large full-disk and continental US images), evaluation is 

performed on a sequence of small chips extracted from the 

images. 

For ABI NAV, the database of Landsat truth images is 

considered to be the locations on which the ABI image should 

be evaluated. IPSE calculates the location and size of the 

portion of the ABI image (in pixels) covered by the truth 

image, taking into account any pixels needed in either image 

to minimize edge effects and for padding. IPSE then treats the 

truth image as if it was just another ABI image for the purpose 

of the scientific evaluation, thus allowing all evaluation types 

to be treated as the comparison of two images at one or more 

locations. The list of Landsat chips is provided to IPSE in the 

form of an SQLite3 database, or as a comma separated value 

(CSV) file, which IPSE then imports into an in-memory 

SQLite database at program startup. 

For all other evaluation types, including GLM 

Background image navigation, IPSE determines the area on 

the ground covered by both images in the pair. It then 

searches a database of predetermined locations that are 

sufficiently inside the intersecting area and are flagged for the 

specific evaluation type. 

ABI L1b imagery is resampled to an angular fixed-grid 

coordinate system; given a virtualized satellite position (e.g., 

over the equator at 89.5 W longitude, neighboring pixels in 

either the X or Y direction have a fixed angular separation. 

This is unfortunately not true for the GLM background 

image, which is not resampled to a fixed grid; individual X 

and Y coordinates are provided for every single pixel. To 

minimize overhead, since image data is not loaded from any 

image at this phase of processing, IPSE treats the GLM 

background image as if it is an ABI full-disk image from the 

perspective of ground coverage. 

2.3. Scientific evaluation 

The vast majority of the real work performed by IPSE is the 

actual evaluation of an image pair at a single location. IPSE 

is structured such that this work is performed by a single 

function, regardless of evaluation type. This function does 

assume that the input images are on a fixed grid, but it does 

not require that the grid be the same for both input images; as 

long as the resolution ratio is an integer, IPSE can compare 

the images. This presents a challenge for the GLM 

Background images, since they are not resampled to the fixed 

grid; that resampling must be done inside IPSE. To 

compensate, the C++ class model implements the GLM 

image loader as a subclass of the ABI image loader. From the 

perspective of the common evaluator function, all image data 

is loaded on-demand, and only for specific pixel regions as 

requested, based on the location of and size of the evaluation 

region. This allows the GLM image loader to perform the 

necessary resampling to a fixed-grid only for the portions of 

the image that are covered by the identified evaluation 

locations, saving significant processing time. 

The details of the evaluation algorithm are fully covered 

in [1]; in summary, IPSE determines the overlapping area in 

the two images, aligns them on a common fixed grid, and then 

expands the necessary region of each image a sufficient 

amount to ensure that when interpolation is performed to 

generate pixels of both images at a target evaluation 

resolution, that interpolation is performed using only real 

pixels. As shown in Figure 1, this processing results in the 

two images being resampled to a common resolution. 

Additional resampled padding pixels are extracted from the 

higher resolution truth image; this allows for the lower 

resolution image (the one under evaluation) to be moved 

around inside the larger truth region to find the best 

correlation. 

 
Figure 1. IPSE resampling truth and evaluation to common 

resolution 



Once the two chips are extracted and resampled to a target 

evaluation resolution, one of three correlators can be used to 

calculate the error between the two images: A position-based 

correlator, using the OpenCV matchTemplate function, a 

correlator using normalized-mutual information, and an FFT-

based phase correlator. The initial raw correlation output can 

then be refined by either centroid or parbolic fit methods. 

That measured and refined error data is then output into the 

IPSE evaluation results database. 

3. IPSE EVALUATION RESULTS DATABASE 

STRUCTURE AND CAPABILITIES 

In order to minimize size and maximize creation speed of the 

Image Pair Registration Record (IPRR) database, the 

database is divided into several tables, linked together 

through an ID column on each row in each table. This allows 

information that is common across many rows (from 

hundreds to millions of rows) to be stored only once in the 

database, but be correctly linked to the record for each 

individual location evaluated for a given pair of images. 

Figure 2 shows the relationships between the key tables in 

the IPRR database, using the Unifed Modeling Language 

(UML). At a high level, a diamond-tipped line shows that a 

row in the table at the diamond-end of the line has a reference 

to a row in the table at the plain end of the line. The number 

on the line indicates the multiplicity of that relationship. For 

example, a Corr row points to two Chips, and can also point 

to 0 or 1 Errors. 

 
Figure 2. UML class diagram showing the key tables in the IPRR 

database 

Key tables in the database are: 

 Rows in the Corr table each contain a single correlation 

output in terms of both raw and refined registration error, 

for a single location within a single pair of images, for a 

single run. This table links back to other tables that 

specify the configuration parameters, the images under 

evaluation, and the chips extracted from those images. 

 Rows in the ScienceConfig table each contain the 

specific scientific parameters (e.g., the subpixel factor, 

interpolation method and correlation method) used for a 

given set of evaluations. This data is generated indirectly 

from the command line and configuration parameters 

specified by the user to ensure that if two users specify 

the same configuration, either intentionally or 

coincidentally, the resulting correlation output records 

all link back to the same configuration. In addition, this 

table allows for configurations to be named, simplifying 

the process for an analyst to use a known configuration. 

 Rows in the QFactor table specify the quality factors 

used for the band pair of the images under evaluation to 

determine whether the images were similar enough to 

compare (e.g., to exclude a cloud covered image from 

evaluation against a cloud free image) 

 Rows in the Chip table each specify the pixel region 

extracted from an image under evaluation, as well as the 

center of the chip in fixed grid angular coordinates. 

 Rows in the Image table each specify the filename and 

key metadata extracted from a single image under 

evaluation 

 Rows in the Location table specify additional 

information about the ground location of the chip. 

 Rows in the Error table specify additional error 

information, for either a correlation, chip or image. For 

example, if correlation fails, a chip is too close to the 

edge of an image, or if an image file is corrupt and cannot 

be loaded, the error will be recorded. 

 Rows in the Run table specify the time of execution and 

information about the version of IPSE being used. 

This structure of the IPRR database allows IPSE to generate 

the necessary data for large volumes of individual evaluations 

without inducing bloat on the database. For example, the 

band-to-band evaluations for one day of ABI imagery could 

result in millions of individual evaluations. 

4. IPSE COMPUTATIONAL PERFORMANCE 

In our current processing environment, IPSE can be run using 

a PostgreSQL database, with the processing spread across 80 

cores. 

Using a library of simulated 2240 ABI L1b full disk image 

files (140 sets of 16 bands, each image 1084810848 pixels), 

IPSE is able to perform NAV evaluation on all images in 

about 5 minutes, using 378 Landsat chips to determine the 

evaluation locations. BBR evaluation on all 140 sets can be 

completed in about 80 minutes, but we expect planned 

improvements to drop that time down under 60 minutes. BBR 

evaluation on that image set results in 6,498,053 attempted 

evaluations, with 5,445,058 complete IPRR records 

generated after outlier rejection. We do not have time figures 

for FFR or SSR at this time, but expect FFR to be on the same 

order of magnitude as NAV, and for SSR to require minimal 

resources due to the highly restricted data sets due to manual 

tasking of SSR pairs. 

5. OUTPUT DATA ANALYSIS TOOL 

While the IPRR database allows for IPSE to perform large 

volumes of evaluations in small amounts of time, the IPRR 

database does not lend itself for easy direct analysis. To aid 



the end-user in evaluating the results and performing cross-

result comparisons, the IPATS tool set contains the Output 

Data Analysis Tool (ODAT). ODAT was developed with two 

goals in mind: to provide a standard interface to the IPATS 

IPRRs, and to provide an easy-to-use graphical interface for 

users who simply want to compute a set of stock statistics and 

plots. ODAT has been developed in Python (version 2.7 or 

higher). Python is becoming increasingly popular for data 

analysis due to its powerful language constructs (it is a fully 

object-oriented language), its increasingly refined data 

analysis packages, and the fact that it is open source and free 

[5][6]. In addition, Python is multi-platform, enabling easy 

deployment to Windows, Linux, and Mac environments[5]. 

In order to keep the number of external Python packages to a 

minimum, ODAT uses stock Python 2.7 modules such as 

Tkinter for the graphical user interface (GUI) and the 

SQLite3 connector for the database.8 The only required 

external package is SciPy, and ODAT makes heavy use of the 

SciPy sub-modules NumPy, Matplotlib, and Pandas for the 

data manipulation and analysis portions of the code due to the 

flexibility and performance these packages offer 

[6][7][8][9][10]. 

 
Figure 3. ODAT Query IPRR screen 

 
Figure 4. ODAT example refined East/West error vs. band plot 

In addition to viewing and analyzing already generated 

results. ODAT allows the analyst to reprocessing specific 

images at specific locations in either debug modes or with 

alternate scientific parameters. In the event of out of family 

results, the analyst can then perform additional testing 

without having to manually identify the images and locations, 

and then manually run IPSE on those locations with altered 

settings. 

6.  
7. CONCLUSION 

The IPSE and ODAT software tools, part of the IPATS tool 

set, provide a high performance, automated processing 

mechanism for evaluating navigation and registration error 

for GOES-R, along with easy to use tools for the analyst to 

examine the results and generate additional statistics and 

metrics. These tools are an essential part of the task to verify 

registration and navigation performance of the GOES-R 

instruments. 
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