TFAWS Interdisciplinary Paper Session

&

ANALYSIS WORKSHOP

TFAWS

MSFC • 2017

THERMAS

Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank

Wanyi Ng & David Benson, NASA GSFC 597

> Presented By Wanyi Ng

Thermal & Fluids Analysis Workshop TFAWS 2017 August 21-25, 2017 NASA Marshall Space Flight Center Huntsville, AL

Outline

- Objective
- Background
- Results and literature verification
 - Mass
 - Frequency
 - Damping ratio
 - Hinge location
- Conclusions

NAS

Model propellant slosh for Europa Clipper using two pendulums such that controls engineers can predict slosh behavior during the mission.

BACKGROUND

Motivation

- Importance of predicting propellant slosh
 - Sloshing changes CM (center of mass) of spacecraft and exerts forces and torques on spacecraft
 - Avoid natural frequencies of structures
 - Size ACS (Attitude Control Systems) thrusters to counteract forces and torques
- Can model sloshing fluid as two pendulums with specific parameters (mass, length, damping)

Background

- Europa Clipper tanks
 - Bipropellant system
 - Cylindrical with domed top and bottom
 - 8-vane PMD (propellant management device)
- CFD (computational fluid dynamics) data used as "real" slosh behavior
 - Have data for two propellants at three fill fractions each
 - Initial condition of 15 degree free surface offset, released and allowed to settle
 - CFD requires long computing time -> Need a computationally simple model

Notional tank and PMD

CFD Simulation Solution Time 2 (s)

Background

Pendulum model

- Model fluid movement as two pendulums attached to central axis of the tank
- For each CFD data set, find parameters: mass, frequency, damping ratio, attachment height

Forces exerted on

$$CM(t) = mLsin\theta(t)$$

= $mLsin\theta_0 e^{-\xi\omega t} \left(\frac{\xi\omega}{\omega\sqrt{1-\xi^2}} \sin\left(\omega\sqrt{1-\xi^2} t\right) + \cos\left(\omega\sqrt{1-\xi^2} t\right) \right)$

Existing Literature

- SP-106 (1966), SwRI (2000): Analytical equations and empirical correlations for damping and frequency
 - Includes bare cylindrical (no PMD), sector, and annular tanks
- Cassini slosh paper (1994): Two pendulum model
 - Slosh around PMD was modeled as combination of sector and annular slosh modes
 - Two separate pendulums to model two slosh modes
 - Static mass component at bottom that experiences little movement

Cassini paper illustration of double pendulum model

METHODS OVERVIEW

Generate CFD Data

- Propellants: NTO and MMH
- Fill fractions: 25%, 50%, 85%
- Data: CM, Force, Moment (all 3 axes)

Find Initial Guesses

- Curve fitting by finding parameters in pendulum equation that most closely match CFD
- Trying to resolve CFD
 into two pendulums
- Peak-to-peak values ->
- Initial guesses for damping and frequency of each pendulum
- Note much higher damping before first peak

MAS

Compare Sum of Pendulums to CFD Data

Mean Error in Force

 Metric to quantify accuracy of fit: mean absolute difference between CFD force and pendulum model force

$$\frac{1}{n}\sum_{1}^{n}abs(CFD-pendulum)$$

• Select methods that minimize this

RESULTS AND LITERATURE COMPARISON

Basis for results

- Coordinate system origin at top of tank
- Parameters prioritized fitting the behavior after the first peak
- Two pendulum model is an approximation only
 - PMD does not create a perfectly sector nor annular tank and is only a fraction of tank height
 - Parameters not constant over time
 - Model does not scale well with high fluid displacements

Mass Participation Fraction

- Pendulum mass as a fraction of total fluid mass
- Monotonic trends
- Mass fractions are identical between NTO and MMH
- Piecewise linear fit
 - First two fill fractions fluid partially submerges PMD, sloshing occurs between vanes
 - Last fill fraction fluid completely submerges PMD, different slosh behavior

- Function of pendulum's length and acceleration
- Monotonic trends
- Frequencies are identical between NTO and MMH
- Frequencies for the two pendulums converge as fill fraction increases
 - Sector and annular slosh modes become less distinct as PMD becomes fully submerged

NA SA

Frequency - Literature Comparison 1

- Left: Cassini paper referenced SP-106 for an analytical equation for slosh frequency in a bare tank (cylindrical tank with no PMD) and compared it to the frequencies of their two pendulums
- Right: Similar trends to Cassini found in Europa pendulum model frequencies
- Sector and annular slosh modes converge towards bare tank frequency as PMD becomes more submerged (fully submerged at 85% fill fraction for Europa tank)

Frequencies vs. Fill Fraction, Comparing to Analytical Sector and Annular Tanks

- SP-106 references tables (Bauer, 1963) for an analytical equations for sector and annular slosh frequency
- Function of acceleration, geometry, and fluid height
- Pendulum frequencies are close to analytical equation frequencies
- Differences between analytical and pendulum fits due to:
 - PMD is not exactly a sector/annular tank
 - Half-dome bottom approximated as flat bottom at 25% fill fraction, sloshing fluid is almost entirely in the dome
 - PMD doesn't include entire height of tank at 85% fill fraction, PMD is completely submerged

Damping Ratio

Damping Ratio vs. Fill Fraction

- Monotonic trends
- Slightly higher damping ratio for higher dynamic viscosity (MMH)

NA SA

Damping Ratio – Comparison 1

- Mikishev and Dorozhkin found correlation for damping in a bare tank
- Function of geometry, acceleration, viscosity, and fluid height
- Scales by correction coefficient for domed bottom —
- Pendulum damping within order of magnitude of analytical prediction
- Pendulum damping less sensitive to viscosity than analytical prediction viscous vs. drag forces

Length and Hinge Location

- Origin is top of tank
- Pendulum bobs stay within fluid
- Monotonic values for pendulum heights
- NTO and MMH heights are close but not identical

NTO 25% fill

NTO 50% fill

NTO 85% fill

MMH 25% fill

MMH 50% fill

PLOTS COMPARING PENDULUM MODELS AND CFD DATA

NAS

	NTO (nitrogen tetroxide)			MMH (monomethyl hydrazine)		
	25% fill	50% fill	85% fill	25% fill	50% fill	85% fill
Mass fraction1	0.048	0.052	0.145	0.048	0.052	0.145
Mass fraction 2	0.03	0.029	0.018	0.03	0.029	0.018
Mass 1 (kg)	20.09	44.49	210.87	12.12	26.69	126.53
Mass 2 (kg)	12.56	24.81	26.18	7.58	14.89	15.71
Frequency 1 (rad/s)	0.1831	0.296	0.3322	0.1831	0.296	0.3322
Frequency 2 (rad/s)	0.7119	0.6575	0.36	0.7119	0.6575	0.36
Damping Ratio 1	0.34	0.105	0.035	0.35	0.11	0.037
Damping Ratio 2	0.015	0.022	0.035	0.02	0.025	0.037
Hinge Height 1 (m)	0.9	-0.4	-0.5	0.9	-0.5	-0.5
Hinge Height 2 (m)	-1.0	-0.7	-0.3	-0.9	-0.7	-0.2
Static Mass Height (m)	-1.12	-0.99	-0.79	-1.14	-0.99	-0.8
Mean Force Error from t=0	0.0716	0.075	0.1055	0.0398	0.0447	0.0679
Mean Force Error from First Peak	0.0241	0.018	0.0775	0.0118	0.0119	0.0518

CONCLUSIONS

- Two-pendulum model can accurately capture either before or after first peak
- High confidence on frequencies except 85% fill pendulum 2
- Moderate confidence on mass, damping, and hinge location
 - Sometimes several sets of parameters could have provided good matching to CFD
 - Selected parameters that made physical sense
- Model parameters may reflect inaccuracies in CFD
- Pendulum model does not scale well for high fluid disturbance
 angles
- Damping is actually a function of time and distance traversed by moving fluid
 - Pendulum model assumes damping is constant over time

- Small initial fluid displacements: Changes have little impact on long-term CFD results
- Large initial displacements: behavior differs drastically

Observations to Note

 Changing density (NTO vs MMH) only slightly changes damping, has little impact on CFD results

- Find literature to support mass fraction parameters
- Potentially to capture first peak add third pendulum with damping ratio of one
- Validate with more CFD data:
 - At intermediate fill fractions
 - At different initial fluid offset angles 5 degree offset is more conservative than 15, will be used for deliverable in May
- Validate with experiments

- Abramson, N.H.: The Dynamic Behavior of Liquids in Moving Containers. NASA SP-106, 1966
- Bauer, H.F.: Tables and Graphs of Zeros of Cross Product Bessel Functions. MTP-AERO-63-50 NASA-MSFC, June 1963
- Dodge, F.T.: The New "Dynamic Behavior of Liquids in Moving Containers". Southwest Research Institute, 2000
- Enright, P.J. and Wong, E.C.: Propellant Slosh Models for the Cassini Spacecraft. AIAA-94-3730-CP, 1994