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ABSTRACT

This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16
pum and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy
Refraction Measuring System (CHARMS) facility at the NASA’s Goddard Space Flight Center. These measurements
were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-
widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at
the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to
account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature,
temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute
refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic
coefficient (dn/dT) and dispersion relation (dn/dA) as a function of wavelength and temperature. Our measurements of
Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well
as measurements reported elsewhere in the literature.
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1. INTRODUCTION

The Cryogenic High Accuracy Refraction Measuring System (CHARMS) was developed at Goddard Space Flight
Center (GSFC), primarily in support of the James Webb Space Telescope (JWST), to measure cryogenic refractive
indices (at temperatures as low as 15 K) with unparalleled accuracy using minimum deviation refractometry.? In this
report Heraeus Homosil was measured in support of the High Spectral Resolution Lidar (HSRL) project at the NASA
Langley Research Center (LaRC). Briefly, the performance of the HSRL hinges on the separation of molecular returns
from particulate returns.®* The implementation of a unique Michelson Interferometer is a very efficient way of
separating the returns (i.e., via an interferometric spectral filter). The unique interferometer utilizes an air spacer in one
arm and a solid glass spacer in the other arm. Challenges arise when using such an interferometer in conjunction with
the HSRL aboard aircraft due in part to the variations in glass temperature. Therefore, an exacting determination of the
refractive index of the glass proposed for the interferometer, Heraeus Homosil, was needed over a broad temperature
range at the operational wavelength of 0.354 um. This measurement pushed the CHARMS facility simultaneously to
both a new short wavelength limit (0.34 um) and a new high temperature limit (335 K).

This paper reports the absolute index of refraction over the wavelength range 0.34 — 3.16 um and temperature range
~120 — 335 K measured on Heraeus Homosil. The short wavelength limit of 0.34 um represents an extension of the
previous capabilities of the CHARMS facility. The previous short wavelength limit of 0.40 um was primarily tied to the
diminishing output of the Quartz Tungsten Halogen (QTH) source lamp that was used to feed the CHARMS
monochromator. To extend the lower wavelength limit, the QTH lamp was replaced with the Energetiq EQ-99. The
EQ-99 is a laser-driver plasma light source that exceeds the output of standard deuterium lamps in the 0.18 to 0.40 um
range by roughly two orders of magnitude. The unique challenge of free space coupling the EQ-99 to the CHARMS
monochromator was elongating the ~100 um diameter image of the source to uniformly fill a ~ 3 cm x 80 pm slit. We
intentionally introduced astigmatism in the image to create a pseudo line source by glancing the diverting EQ-99 source
off a spherical mirror. (Note, the f-number of the spherical mirror was matched to the f-number of the CHARMS
monochromator.) The newly established short wavelength limit was defined by the efficiency of the grating
monochromator installed and the selection of order-sorting filters utilized. A replacement grating and set of order-



sorting filters that would allow coverage below 0.34 um and to the 5.0 um upper limit, without breaking configuration,
are being investigated. The high temperature limit of 335 K was achieved by simply allowing the heater to slowly ramp.
Glass from the specific Heraeus Homosil melt was polished into a prism geometry. CHARMS measurements are
absolute — taken in high vacuum (< 1e-5 Torr), so that the index of the surrounding medium is unity.

2. PRESENTATION OF MEASURED INDEX DATA

CHARMS is a minimum deviation refractometer. Minimum deviation refractometry is the most accurate available
method for obtaining the real part of the refractive index, n. The condition of minimum deviation is met when light
transits the prism perpendicular to the bisector of the prism’s apex. Minimum deviation refractometry has an advantage
over other techniques used to obtain refractive index (e.g., Kramers-Kronig transformation of broadband reflectance or
transmittance) because it can be a few orders of magnitude more precise and accurate and does not depend on
extrapolations. A detailed description of the data acquisition and data reduction processes of CHARMS is documented
elsewhere.! Raw index data as a function of temperature and wavelength are fit to a Sellmeier model of the following
form:
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where the S; terms represent the strengths of theoretical resonance features at center frequencies defined by their
respectively indexed Ai’s. It is generally found that the first three or four terms of the summation (j=3 or 4) are sufficient
to generate adequate fits of smoothly varying index spectra over temperature and wavelength space. Typical Sellmeier
fits generated agree with the raw measured index values to less than our measurement uncertainties (cf. Section 4).
Extrapolation beyond the measured range is strongly discouraged as unpredictable results are likely, and disappointing
performance in as-built lenses systems abound. The wavelength range of applicability for the Sellmeier coefficients
reported here is 0.34 — 3.16 um. The temperature range of applicability for each glass is listed in Table 1.

3. MEASUREMENT DETAILS AND FIT COEFFICIENTS

Table 1 lists summarizing parameters from the CHARMS measurement of Heraeus Homosil presented herein. The stated
apex angle holds significance out to five decimal places. This exacting determination of apex angle is provided by high
accuracy absolute encoders and the ultra-high resolution, nulling, electronic autocollimator are used to determine the
angle between adjacent refracting faces of the prism. The apex measurement is repeated at four separate orientations
spaced by 90° on a spindle platform to reduce systematic errors. The number of deviations represents the raw number of
independent index measurements made over the stated wavelength and temperature range. The average absolute
residual is obtained by taking the average of the absolute values of the differences between each measured index value
(i.e., all 1531 values) and the corresponding index value computed by our Sellmeier fit at that respective wavelength and
temperature. The average absolute residual supports how well our fit agrees with our raw measured data. Table 2
contains the temperature-dependent Sellmeier coefficients to third order. We observed that fourth order fits made a
negligible (2E-8) improvement to the average absolute residual. All 24 coefficients of the third order Sellmeier equation
were free parameters for optimization under the constraint that a positive overall value is generated on the right side of
equation 1.

Table 1. Prism ID, apex angle, raw index measurements (# of deviations), average absolute residual, and measured temperature range

Prism ID | apex angle [°] | # of deviations | average absolute residual | temp. range [K] | wavelength range [pm]
Homosil 59.061271 1531 5.07E-06 120-335K 0.34-3.16

Table 2. Third order temperature-dependent Sellmeier fit coefficients to the absolute refractive indices of Heraeus Homosil.



Coefficients for the temperature-dependent Sellmeier equation for Heraeus Homosil
120 K<T<335K; 0.34 pm <1 <3.16 pm
S Sy S3 M My A
Constant term 1.29225E-01  9.71572E-01  8.27751E-01  2.51954E-02  9.21570E-02 9.60864E+00
T term 1.90245E-03 -1.89331E-03  1.40059E-03  5.60903E-05 1.29460E-04 6.32992E-03
T? term -2.20990E-06  2.22447E-06 -5.87619E-06  5.25874E-07 -3.74501E-07 -2.63568E-05
T term -2.59028E-09  2.61417E-09 6.96388E-09 -1.43461E-09 3.50573E-10 3.06661E-08

4. MEASUREMENT UNCERTAINTIES

The infrastructure employed within the CHARMS facility strives to achieve the highest achievable accuracy and
precision over the available wavelength and temperature space by minimizing all sources of systematic error associated
with the minimum deviation refractometry. A comprehensive CHARMS report detailing the most significant
contributors to index errors has been previously published.® In what follows, a brief summary of the sources of error and
ultimate extraction of measurement uncertainties is presented.

At the condition of minimum deviation, the index of refraction of a material is defined by the following expression:
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where & is the deviation angle subtended by the refracting light and a is the angle between refracting faces. The angle
between the unobstructed path of the light and the path of light that is refracted by the glass defines the deviation angle.
This angle is recorded by the rotation of a flat mirror that is capable of sending both beams of light towards a common
detector. The flat mirror is on an ultra-low runout rotation bearing with absolute rotary encoders having diametrically
opposed read stations. Measurement of the apex angle, a, is detailed above in Section 3. The apex angle measurement,
which also employs absolute rotary encodes, produces <0.3 arcsecond accuracy. The accuracy to which 6 and o are
measured is levied by the performance of the absolute rotary encoders, which read out the bearing angle accurately to
less than 0.00003° with a peak noise less than 0.00001°. Uncertainty in wavelength and temperature are the other
dominant sources of error. Furthermore, knowledge of temperature (wavelength) can be a non-negligible function of
temperature (wavelength) itself. The extent to which both wavelength and temperature influence the uncertainty in a
material’s index depends on how index varies with each respective parameter. Therefore, when calculating uncertainty,
it is important to examine how spectral dispersion (dn/dA) and the thermo-optic coefficient (dn/dT) each vary with
wavelength and temperature. The dn/dT and dn/d\ are computed analytically from derivatives of the Sellmeier equation.
Once all constituent uncertainties are determined, they are combined appropriately into the overall uncertainty for the
measurement. The uncertainties of Heraeus Homosil at selected wavelengths and temperatures are reported in Table 3.

Table 3. Uncertainty in measured refractive index of Heraeus Homosil for representative wavelengths and temperatures.

wavelength 150K 200K 250K 300 K 330K
0.35 um 3.55E-05 3.21E-05 2.90E-05 2.12E-05 1.95E-05
0.5 pm 2.31E-05 2.03E-05 1.74E-05 1.05E-05 8.83E-06
1.0 pm 1.97E-05 1.69E-05 1.40E-05 7.63E-06 6.04E-06
2.0 pym 2.18E-05 1.94E-05 1.65E-05 1.00E-05 8.41E-06
3.0 ym 2.20E-05 1.99E-05 1.69E-05 1.04E-05 8.69E-06




5. REFRACTIVE INEX OF HERAEUS HOMOSIL

The absolute refractive index of Heraeus Homosil at selected temperatures over the 0.34—3.16 pum range is shown in
Fig. 1. At the short wavelength end, the measurement was limited by the grating monochromator and selection of order-
sorting filters installed in CHARMS. The index trends upward as it impinges on the absorption edge of the material at
roughly 170 um. At the long wavelength end the measurement was limited by the transmittance of the glass. The index
was measured at multiple wavelengths longer than the strong 2.7 um absorption in Heraeus Homosil,® an absorption
associated with the O-H vibration of water in the SiO; structure. Figure 2 depicts the dispersion of index with
wavelength over the measured range at the same selected temperatures. Upon close examination it can be determined
that the dispersion increases in magnitude with increasing temperature below 1.3 um and has the opposite trend above
1.3 pym. The thermal-optic coefficient is presented in Fig. 3. The thermo-optic coefficient is positive over the entire
measured range and it decreases with decreasing temperature. The tabulated values at selected wavelengths for the
absolute index, dispersion, and thermo-optic coefficient are provides in Tables 4, 5, and 6, respectively.
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Figure 1: The absolute temperature-dependent refractive index of Heraeus Homosil over the wavelength range 0.34 to 3.16 um.



Temperature-dependent dn/d\ of Heraeus Homosil
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Figure 2: The dispersion of index with respect to wavelength of Heraeus Homosil over the wavelength range 0.34 to 3.16 pm at
discrete temperatures over the measured range.
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Figure 3: The thermo-optic coefficient of Heraeus Homosil over the wavelength range 0.34 to 0.31 um at discrete temperatures over
the measured range.



Table 5: The spectral dispersion, dn/dA, of Heraeus Homosil at selected wavelengths and temperatures in units of 1/pum.

Table

Table 4: The absolute refractive index, n, of Heraeus Homosil at selected wavelengths and temperatures.

wavelength 125K 150K 175K 200K 225K 250K 275K 300K 325K
0.4 um 1.46932  1.46946  1.46961  1.46978 1.46996 1.47017 1.4704 1.47059  1.47089
0.6 um 1.45733  1.45746 1.4576 1.45775  1.45793  1.45812 1.45832 1.45849  1.45877
0.8 pm 1.45263  1.45276 1.4529 1.45305  1.45322 1.4534 1.4536 1.45377  1.45404
1.0 ym 1.44975 144987 145001 1.45016 1.45033 1.45051 1.4507 1.45087 1.45114
1.2 pm 1.44739  1.44751  1.44765 1.4478 1.44796  1.44814 1.44834  1.44851 1.44877
1.4 um 144512 1.44524  1.44538  1.44553 1.4457 1.44588  1.44607 144624  1.44651
1.6 pm 1.44277  1.44289  1.44302  1.44317 1.44334 144352 144372 144389 1.44415
1.8 um 1.44023  1.44035 1.44048  1.44063 1.4408 1.44098  1.44118 1.44135 1.44162
2.0 ym 1.43745  1.43757 1.4377 1.43785 1.43802  1.43821 1.4384 1.43857  1.43884
2.2 um 1.43439 1.4345 1.43464  1.43479 143496 143514 1.43534 143551 1.43578
2.4 um 1.43101  1.43113 143126 1.43141 1.43158 1.43177 143197 143214 1.43241
2.6 um 1.42729  1.42741  1.42754 142769  1.42786  1.42805 142825  1.42842  1.42869
2.8 um 1.42319  1.42331  1.42345 1.4236 1.42377 142396  1.42416  1.42433 1.4246
3.0 ym 1.41869  1.41881  1.41895 1.4191 1.41927 141946 1.41966 141983  1.42009

wavelength | 125K 150 K 175K 200 K 225K 250K 275K 300K 325K
0.4 pm -0.10817 -0.10835 -0.10847 -0.10859 -0.10874 -0.10891 -0.10909 -0.10924 -0.10949
0.6 pm -0.0331  -0.03313  -0.03315 -0.03317 -0.03321 -0.03326 -0.03331 -0.03335 -0.03341
0.8 pm -0.0172  -0.01721 -0.01722 -0.01723 -0.01724 -0.01726 -0.01728 -0.01729 -0.01731
1.0um | -0.01258 -0.01258 -0.01259 -0.01259 -0.01259 -0.0126 -0.01261 -0.01261 -0.01262
12pum | -0.01135 -0.01135 -0.01135 -0.01135 -0.01136 -0.01136 -0.01136 -0.01136 -0.01136
1.4 pm -0.01145 -0.01145 -0.01145 -0.01145 -0.01145 -0.01145 -0.01145 -0.01144 -0.01144
1.6 pm -0.01218  -0.01218 -0.01218 -0.01218 -0.01218 -0.01217 -0.01217 -0.01217 -0.01216
1.8um | -0.01326 -0.01327 -0.01327 -0.01326 -0.01326 -0.01326 -0.01325 -0.01325 -0.01324
20pum | -0.01458 -0.01458 -0.01458 -0.01458 -0.01458 -0.01457 -0.01456 -0.01456 -0.01456
22pum | -0.01607 -0.01607 -0.01607 -0.01607 -0.01607 -0.01606 -0.01606 -0.01605 -0.01603
2.4 pm -0.01772  -0.01772 -0.01772 -0.01772 -0.01771 -0.01771 -0.0177  -0.0177  -0.0177
2.6 pm -0.01951  -0.01951 -0.01951 -0.01951 -0.01951 -0.0195  -0.0195  -0.0195  -0.0195
28pum | -0.02146 -0.02146 -0.02146 -0.02146 -0.02145 -0.02145 -0.02145 -0.02146 -0.02146
3.0pm | -0.02357 -0.02357 -0.02356 -0.02356 -0.02356 -0.02357 -0.02357 -0.02358 -0.02359

6: The thermo-optic coefficient, dn/dT, of Heraeus Homosil at selected wavelengths and temperatures in units of 1/K.

wavelength | 125K 150K 175K 200 K 225K 250K 275K 300K 325K
0.4 um 5.79E-06 5.74E-06 6.3E-06 7.15E-06 8.01E-06 8.7E-06 9.21E-06 9.73E-06 1.07E-05
0.6 pum 4.99E-06 531E-06 5.9E-06 6.6E-06 7.29E-06 7.9E-06 8.44E-06 8.97E-06 9.68E-06
0.8um | 4.81E-06 5.23E-06 5.8E-06 6.43E-06 7.06E-06 7.65E-06 82E-06 8.75E-06 9.4E-06
1.0 um | 4.72E-06 5.19E-06 5.76E-06 6.36E-06 6.97E-06 7.56E-06 8.11E-06 8.68E-06 9.3E-06
12um | 4.65E-06 5.17E-06 5.74E-06 6.35E-06 6.95E-06 7.53E-06 8.09E-06 8.66E-06 9.26E-06
l4um | 459E-06 5.14E-06 5.74E-06 6.35E-06 6.95E-06 7.54E-06 8.11E-06 8.67E-06 9.25E-06
1.6 um | 4.52E-06 5.12E-06 5.74E-06 6.36E-06 6.98E-06 7.57E-06 8.13E-06 8.69E-06 9.25E-06
1.8 um | 445E-06 5.1E-06 5.75E-06 6.39E-06 7.01E-06 7.6E-06 8.17E-06 8.72E-06 9.25E-06
20um | 439E-06 S5.08E-06 5.76E-06 6.41E-06 7.05E-06 7.65E-06 821E-06 8.75E-06 9.26E-06
22um | 433E-06 S5.06E-06 5.77E-06 6.44E-06 7.08E-06 7.69E-06 825E-06 8.77E-06 9.26E-06
2.4 um 4.27E-06 5.05E-06 5.78E-06 6.47E-06 7.12E-06 7.73E-06 8.28E-06 8.79E-06 9.25E-06
26um | 423E-06 5.04E-06 5.79E-06 6.49E-06 7.15E-06 7.75E-06 8.3E-06 8.79E-06 9.22E-06
28um | 421E-06 5.05E-06 5.81E-06 6.51E-06 7.17E-06 7.76E-06 8.3E-06 8.77E-06 9.17E-06
3.0um | 422E-06 5.06E-06 5.82E-06 6.52E-06 7.17E-06 7.75E-06 827E-06 8.72E-06 9.09E-06




6. DISCUSSION

There is no refractive index data at cryogenic temperatures in the literature for Heraeus Homosil. However, the Heraeus
glass catalog® offers a densely populated table of refractive index for discrete wavelengths ranging from 0.2 to 3.4 pm.
The catalogue quotes that measured values have an accuracy of + 3.0E-5, which is greater than our single measurement
uncertainty at 300 K (cf. Table 3). In general, catalogue refractive index values statistically represent many melts of a
given glass type over time. We are advantaged here by the fact that, in contrast to other optical glasses, fused silica
shows a smaller difference in refractive index from melt to melt. (Note, a comparative study of fused silica glasses
measured on CHARMS is presented below in this section.) We have also located four thermo-optic coefficient data
points in the Heraeus catalog that overlap our measured range.

Heraeus Homosil catalog index values are quoted at ambient pressure and 20° C. We must first scale the catalog values
to their respective vacuum values in order to compare them to index measurements from CHARMS. This is
accomplished by multiplying the values relative to air by the spectral refractive index of air, nai(A). For our comparison,
we plot the difference between the scaled Heraeus Homosil indices and the indices from our CHARMS Sellmeier fit
calculated at 293 K in the wavelength region where the two data sets overlap. (Note, the Heraeus catalog values span a
wider wavelength range than the CHARMS values so a comprehensive comparison to our data set at 293 K is achieved.)
The results of the comparison are shown in the left panel of Fig. 4. The index difference ranges from 1.2E-4 at the short
wavelength end to -1.3E-5 at the long wavelength end. Notably, the index difference profile takes on the same
dispersion as the refractive index itself, yielding the largest index difference at the extremes of the wavelength scale.
The average absolute residual of the comparison is 6.42E-5, which is foreshadowed by the high density of catalog index
values between 0.5 and 1.0 um as shown in the plot.  The right panel of Fig. 4 shows the thermo-optic coefficient
(dn/dT) difference between the values found in the catalog and the CHARMS values presented in this study. The
catalog thermo-optic coefficient values were scaled to vacuum values using the same method described above. The
average absolute residual of the thermo-optic coefficient comparison is 1.6E-6, which is well below our single
measurement uncertainty. The agreement of the four data points are excellent. It is noted that the catalog thermo-optic
coefficient values are greater than the CHARMS values. A systematic trend in the data is not noted.
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Figure 4. The difference between the Heraeus catalog indices (scaled to vacuum) and indices measured on CHARMS at
293 K (left panel), and the thermo-optic coefficient difference between the Heraeus catalog and CHARMS at 293 K (right
panel).

We finally compare our 293 K absolute index data on Heraeus Homosil with past CHARMS literature of other fused
silica-based glasses. The index difference between Heraeus Homosil and Infrasil 301,” also a Heraeus glass, represents
the closest agreement. Infrasil 301 is systematically higher than Heraeus Homosil, and the index difference is nearly flat
in the 5E-5 range. The Heraeus catalog applies the same set of index values for both Homosil and Infrasil 301, thus
seemingly indicating that the difference between the two glasses (and from melt to melt) is below their measured
accuracy range (3E-5). We have found that the difference between the specific Homosil melt presented here exceeds
their measured accuracy range by 2E-5. The index difference between CHARMS measurements of Corning 7980 and



Homosil represents a close second in the comparison ranking. 8 Our measurements of Corning 7980 are systematically
lower than the Homosil measurements, although the bulk of the difference values falls in the mid E-5 range. The index
difference profile with Corning 7980 is systematically decreasing with increasing wavelength. Lastly, we compare
Homosil with CHARMS measurements of Suprasil 3001, representing six different glasses from two distinct melts.®
The index difference with Homosil is again nearly flat and in the low 2E-4 range.
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Figure 5. The index difference between CHARMS measurements on Heraeus Homosil and CHARMS measurements on
other fused silica compounds at 293 K.

7. CONCLUSION

We have measured the absolute refractive index of Heraeus Homosil over the wavelength range 0.34 — 3.16 pum and
temperature range ~120 — 335 K. We have fitted our temperature-dependent refractive index data set with a third order
Sellmeier model. The average absolute residual of our modeled data (5.07E-6) agrees with the raw index data to within
our calculated uncertainties (cf. Table 3) over the entire measured range. The average absolute residual is on the same
order of magnitude as other exacting CHARMS measurements published in the literature. We have derived the spectral
dispersion and thermo-optic coefficient for Heraeus Homosil based on dense temperature-wavelength coverage.
CHARMS index values of Heraeus Homosil were compared to the index values listed in the Heraeus catalog at ambient
temperature and pressure. We observe an average difference of 6.42E-5 between CHARMS and the Heraeus catalog.
Heraeus Homosil was compared with other fused silica-based glasses measured by CHARMS. Not surprisingly, our
measurements of (Heraeus) Infrasil 301 resulted in the closest comparison, which was foreshadowed by the fact that the
two glasses often share the same properties in the Heraeus catalog.
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