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Overview and Objectives
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Hubble Deep 
Field

WFIRST-AFTA Deep Field
• Summarized Task Description

• Deposit high performance UV to FIR optical broadband coatings by 
designing/constructing hybrid thin film deposition/ fluorination chamber capable of 
depositing aluminum under ultra-high vacuum with the capability of adding a 
precursor gas to fluorinate the surface and form a thin layer of AlF3 to protect the 
metal from oxidation.

• Driver / Need

• High-performance broadband coatings (90-10,000 nm) have been identified as an 
“Essential Goal” in the technology needs for the Large UV/Optical/IR (LUVOIR) 
Surveyor observatory. 

• Low reflectivity and transmission of coatings in the Lyman Ultraviolet (LUV) range of 
90-130 nm is one of the biggest constraints on FUV telescope and spectrograph 
design.

• Benefits

• By demonstrating new low-absorbing materials which can be used at a broadband, 
the technology will enable the merging astrophysics, solar physics, atmosphere 
physics, and optical exoplanet sciences with a shared telescope providing high 
throughput and signal-to-noise ratio (SNR) in the entire spectral range.
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Hybrid PVD Passivation/Fluorination 
chamber
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Reactive fluorine 
compound with low bond 
energy used (e.g. XeF2

with 133.9 kJ/Mole)

Heating will also be used 
if compound is not 
sufficiently reactive for 
increased selectivity. 

XeF2 is a dry-vacuum based method of reaction and requires no plasma or other activation 
minimizing damage to substrate.
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Objective: Oxide-Free Aluminum Mirrors
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Bare Aluminum

We propose to develop isotropic/homogenuous protected Aluminum 
broadband mirror coatings with high performance that will extend from the 
Far-Ultraviolet (FUV) through the far-infrared wavelengths (90-10,000 
nm).
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Assembled Research Chamber
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Inside of 
chamber PVD 
components.

UHV Research Chamber capable of thin film 
physical vapor deposition (PVD) and passivation.

Gas feed components capable of 
continuous flow or pulsed flow.
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Research Chamber Schematics
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Research Chamber for in-situ thermal evaporation and 
fluorination

Rack-mounted control/monitor 
components.
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LAPPS Reactor at NRL
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 The US Naval Research Laboratory’s Large Area 
Plasma Processing System (LAPPS), which employs an 
electron beam generated plasma for etching and 
fluorination of Al samples. 

 The schematic diagram illustrates the processing 
reactor use din this work, whereas the image on the 
upper right corner is a view of the plasma through a 
6 inch port. 
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Motivation for e-Beam Etching
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Electron beam  generated plasmas have demonstrated the ability 
to chemically modify2-D materials while maintaining their unique 
characteristics.

Electron beam generated plasmas have shown promise as a low 
damage etch source. Particularly in processing devices with 
integrated 2-Dmaterials.

They have also demonstrated selective, highly directional, low 
damage etching in SiN without pattern dependent etch 
characteristics in fluorine based chemistries.

To understand these results it is important to understand the 
unique attributes of electron beam generated plasmas.
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How are e-beam generated?
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o The injection of a 2 keVbeam into the background gas will directly ionize and dissociate the gas.
o Beam energy well above ionization threshold
o higher beam energy = more efficient ionization
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Predicted Performance Comparison
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Predicted fluorinated Aluminum should surpass performance of conventional 
Protective Aluminum coatings



# 10398-35 2017 Optics + Photonics

High Performance Aluminum 
Deposited in Research Chamber
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LAPPS E-Beam Results
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Reflectance results of Al+AlF3 and Al+LiF samples before and after treatment in the LAPPS reactor at NRL.
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Bare Al e-Beam Etching
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Reflectance results of bare Al sample with native oxide layer before and after treatment in the LAPPS reactor at NRL.
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Bare Al Before & After XeF2 Treatment
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Reflectance results of bare Al sample with native oxide layer before and after treatment in the XeF2 reactor locate din 
the Detector Branch (Code 553) at GSFC.
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AlF3 as Aluminum mirror Overcoat
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Figure on the left shows the stability in the reflectance of an 
Al+AlF3 sample after it was freshly coated and 6 months later. 

The figure on the right shows the predicted reflectance performance for a 
sample with coating parameters as result shown in figure on the left  (Al:70 
nm; AlF3: 24 nm) in comparison with a much thinner AlF3 overcoat (3 nm), 
which will the AlF3 thickness for a successfully fluorinated Al sample.
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Conclusions
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 We studied the feasibility of using the LAPPS reactor (developed at NRL) that employs a low 
energy- e-beam to etch away the native oxide layer from Al samples as well as thinning the AlF3

and LiF layers for Al protected with these dielectrics.

 Results indicate no improvement in reflectance performance which may indicate a more 
aggressive ion or chemical etching would be required for successful native oxide layer removal.

 A second experiment of etching a bare Al smaple in a XeF2 recator produced a sample with a 
slight improvement in reflectance in the FUV spectral range.

 Chemical analysis would be conducted in the near future to determine composition of a sample 
before and after XeF2 treatment.

 Predicted reflectance performance for a fluorinated Al mirror would produce a sample with 
reflectance close to 50% at 100 nm and over 90% at wavelengths longer than 110 nm. 

 An aluminum sample coated with  an AlF3 overcoat shows a stable reflectance after being kept in 
a normal laboratory environment (40-50% relatibe humidity) fo ra period of 6 months.


