

The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-opportunity Remote Sensing

Jeffrey R. Piepmeier¹, Manuel Vega¹, Matthew Fritts^{1,2}, Cornelius DuToit^{1,3}, Joseph Knuble¹, Yao-Cheng Lin⁴, Benjamin Nold⁴, James Garrison⁴

IGARSS 2017 Fort Worth, TX

¹NASA Goddard Space Flight Center, Greenbelt, MD, USA
 ²SGT, Inc., Greenbelt, MD 20771, USA ³AS&D, Inc., Greenbelt, MD 20771, USA
 ⁴Purdue University, West Lafayette, IN, USA

Outline

- P-band, Soil Moisture, and SoOp
- SoOp-AD and Results
- RFI Effects in SoOp
- Spectrum Observations
- Conclusions

Importance of Sensing < 500 MHz

MIE

UN

- 1. Flat specular reflection
- 2. Single layer and media
- 3. No vegetation effect

Specular reflection

Γ: Reflectivity C_D : Carrier power for direct signal C_R : Carrier power for reflected signal

- Re-utilization of existing transmissions (e.g. potential RFI *sources*)
- No transmit permission required (re: ESA's Biomass)
- Bands allocated for Space-Earth communications
- High power, forward scatter -> High SNR/smaller antenna
- Resolution set by signal bandwidth or Fresnel zone

P-band SoOp offers opportunity to measure deeper soil moisture from space at low cost

- 225–420 MHz allocation for defense/government use
- Continuous use by US & Others since 1978 (FLTSATCOM)
- Planned utilization through 2024

- Multiple Low bandwidth (5, 25 KHz) digital channels.
- Well documented and (supposedly) easy to receive by:

[www.uhf-satcom.com, www.crypto.com]

IGARSS 2017

"Nearly illiterate men rigged a radio in less than one minute" [*Wired*, April 20, 2009]

10.1016/j.asr.2012.12.017]

PURDUE UNIVERSITY

Wide government use:

"The band 225-328.6 MHz is used for a diverse array of land-based, airborne, maritime, and satellite radio communications services by the military forces, National Guard units, Federal Aviation Administration (FAA), Coast Guard (CG), National Aeronautics and Space Administration (NASA), Department of Energy (DOE), and other Federal agencies. Tactical and non-tactical mobile communications, mobilesatellite communications, and air traffic control communications are the most prevalent uses."

Federal Government Spectrum Compendium, December 16, 2015. National Telecommunications and Information Administration [Online.] https://www.ntia.doc.gov/print/other-publication/2015/federal-government-spectrum-compendium

Signals of Opportunity Airborne Demonstrator (SoOp-AD)

UN

VERS

• Lake Ellsworth Overflights

Science Flight 3 (10/22)

Science Flight 5 (10/25)

Auto-correlation of channel 1 $R_{11}(\tau) = \langle x_1^*(t) x_1(t+\tau) \rangle$ $= G_1 G_{S,D} C_D \langle a^*(t-\tau_D) a(t-\tau_D+\tau) \rangle + G_1 \sigma_1^2 \delta(\tau)$ Cross-correlation of channel 1 and 2 $R_{12}(\tau) = \langle x_1^*(t) x_2(t+\tau) \rangle$ $= \sqrt{G_1 G_2 G_{S,D} G_{E,R}} \Gamma C_D \langle a^*(t-\tau_D) a(t-\tau_R+\tau) \rangle e^{j\omega(\tau_R-\tau_D)} \frac{m}{2}$

Reflectivity:

$$\frac{R_{12}(\tau_{RD})}{R_{11}(0) - G_{1}\sigma_{1}^{2}} = \sqrt{\frac{G_{2}G_{E,R}}{G_{1}G_{S,D}}}\sqrt{\Gamma}e^{j\omega\cdot\tau_{RD}}$$

Reflectivity: 0.65, EIRP: 26 dB

 RFI in sky antenna (channel 1) adds to R₁₁(0), which attenuates estimate by:

$$\sim \left(\frac{1}{1+ISR}\right)^2 \qquad \qquad ISR = \frac{I_D}{C_D}$$

- RFI in Earth antenna increases noise
- RFI in both antennas adds to R_{12}
 - Systematic addition or subtraction, else
 - Increase noise if $\tau_{RD} \gg 1/BW_I$

Reflectivity:

$$\frac{R_{12}(\tau_{RD})}{R_{11}(0) - G_{1}\sigma_{1}^{2}} = \sqrt{\frac{G_{2}G_{E,R}}{G_{1}G_{S,D}}}\sqrt{\Gamma}e^{j\omega\cdot\tau_{RD}}$$

Reflectivity: 0.65, EIRP: 26 dB

Urban Local Spectrogram

Spectrogram collected near Washington, D.C. shows desired persistent narrowband signals

but with significant broadband transient interference.

S

Rural Local Spectrum 1

Spectrogram showing desired persistent narrowband signals with no discernable RFI from undesired signals.

UN

VERS

Rural Local Spectrum 2

Spectrogram showing desired persistent narrowband signals with potential RFI in band 4.

R S

Airborne Spectrum

Spectrogram showing desired narrowband signals with no discernable RFI from undesired signals.

UN

V

ERS

- This work was funded under NASA Grant NNX14AE80G (2013 Instrument Incubator Program).
- USDA (Michael Cosh) provided valuable assistance with utilizing the Little Washita ARS Micronet data.

- Rural spectrum cleaner than Urban spectrum
- Urban spectrum possibly worst case because
 D.C. area
- Airborne spectrum example appears clean